Topological enumeration of complex polynomial vector fields
The enumeration of combinatorial classes of the complex polynomial vector fields in $ \mathbb{C} $ presented by K. Dias [Enumerating combinatorial classes of the complex polynomial vector fields in $ \mathbb{C} $. Ergod. Th. & Dynam. Sys. 33 (2013), 416–440] is extended here to a closed form enu...
Uložené v:
| Vydané v: | Ergodic theory and dynamical systems Ročník 35; číslo 4; s. 1315 - 1344 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cambridge, UK
Cambridge University Press
01.06.2015
|
| Predmet: | |
| ISSN: | 0143-3857, 1469-4417 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The enumeration of combinatorial classes of the complex polynomial vector fields in $ \mathbb{C} $ presented by K. Dias [Enumerating combinatorial classes of the complex polynomial vector fields in $ \mathbb{C} $. Ergod. Th. & Dynam. Sys. 33 (2013), 416–440] is extended here to a closed form enumeration of combinatorial classes for degree $d$ polynomial vector fields up to rotations of the $2(d- 1)\mathrm{th} $ roots of unity. The main tool in the proof of this result is based on a general method of enumeration developed by V. A. Liskovets [Reductive enumeration under mutually orthogonal group actions. Acta Appl. Math. 52 (1998), 91–120]. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0143-3857 1469-4417 |
| DOI: | 10.1017/etds.2013.100 |