Newton-like methods and polynomiographic visualization of modified Thakur processes
The content of this paper is twofold. First, it aims to provide some new Newton-like methods for solving the root-finding problem in the complex plane. Moreover a convergence test for the resulted methods is phrased and proved. The pseudo-Newton method of Kalantari for finding the maximum modulus of...
Uloženo v:
| Vydáno v: | International journal of computer mathematics Ročník 98; číslo 5; s. 1049 - 1068 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
04.05.2021
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0020-7160, 1029-0265 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The content of this paper is twofold. First, it aims to provide some new Newton-like methods for solving the root-finding problem in the complex plane. Moreover a convergence test for the resulted methods is phrased and proved. The pseudo-Newton method of Kalantari for finding the maximum modulus of complex polynomials arises as particular case of the newly proposed procedures. Secondly, a recently introduced Thakur iterative process is used in connection with the newly described methods. Its stability and data dependence is subject to analysis. Ultimately, an illustrative analysis regarding some modified Thakur iteration procedures, is obtained via polynomiographic techniques. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0020-7160 1029-0265 |
| DOI: | 10.1080/00207160.2020.1802017 |