Calculus of convex polyhedra and polyhedral convex functions by utilizing a multiple objective linear programming solver

The article deals with operations defined on convex polyhedra or polyhedral convex functions. Given two convex polyhedra, operations like Minkowski sum, intersection and closed convex hull of the union are considered. Basic operations for one convex polyhedron are, for example, the polar, the conica...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optimization Ročník 68; číslo 10; s. 2039 - 2054
Hlavní autori: Ciripoi, Daniel, Löhne, Andreas, Weißing, Benjamin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia Taylor & Francis 03.10.2019
Taylor & Francis LLC
Predmet:
ISSN:0233-1934, 1029-4945
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The article deals with operations defined on convex polyhedra or polyhedral convex functions. Given two convex polyhedra, operations like Minkowski sum, intersection and closed convex hull of the union are considered. Basic operations for one convex polyhedron are, for example, the polar, the conical hull and the image under affine transformation. The concept of a P-representation of a convex polyhedron is introduced. It is shown that many polyhedral calculus operations can be expressed explicitly in terms of P-representations. We point out that all the relevant computational effort for polyhedral calculus consists in computing projections of convex polyhedra. In order to compute projections we use a recent result saying that multiple objective linear programming (MOLP) is equivalent to the polyhedral projection problem. Based on the MOLP solver bensolve a polyhedral calculus toolbox for Matlab and GNU Octave is developed. Some numerical experiments are discussed.
AbstractList The article deals with operations defined on convex polyhedra or polyhedral convex functions. Given two convex polyhedra, operations like Minkowski sum, intersection and closed convex hull of the union are considered. Basic operations for one convex polyhedron are, for example, the polar, the conical hull and the image under affine transformation. The concept of a P-representation of a convex polyhedron is introduced. It is shown that many polyhedral calculus operations can be expressed explicitly in terms of P-representations. We point out that all the relevant computational effort for polyhedral calculus consists in computing projections of convex polyhedra. In order to compute projections we use a recent result saying that multiple objective linear programming (MOLP) is equivalent to the polyhedral projection problem. Based on the MOLP solver bensolve a polyhedral calculus toolbox for Matlab and GNU Octave is developed. Some numerical experiments are discussed.
Author Löhne, Andreas
Ciripoi, Daniel
Weißing, Benjamin
Author_xml – sequence: 1
  givenname: Daniel
  surname: Ciripoi
  fullname: Ciripoi, Daniel
  organization: Department of Mathematics, Friedrich Schiller University Jena
– sequence: 2
  givenname: Andreas
  surname: Löhne
  fullname: Löhne, Andreas
  email: andreas.loehne@uni-jena.de
  organization: Department of Mathematics, Friedrich Schiller University Jena
– sequence: 3
  givenname: Benjamin
  surname: Weißing
  fullname: Weißing, Benjamin
  organization: Department of Mathematics, Friedrich Schiller University Jena
BookMark eNqFkM1q3DAURkVJoZO0j1AQdO2pZMljiW4ahiYNBLpp1-Javko1yNJUsqeZPH1tJqGQRbISF53v_pxzchZTREI-crbmTLHPrBaCayHXNeNqzRuupGzfkBVnta6kls0ZWS1MtUDvyHkpO8ZqvqnlitxvIdgpTIUmR22KB7yn-xSOv7HPQCH2_6vw9O-maEefYqHdkU6jD_7BxzsKdJjC6PcBaep2OCMHpMFHhEz3Od1lGIaFKykcML8nbx2Egh8e3wvy6-rbz-336vbH9c328rayQqixajvXMkTXdkwggtId3zRzAa1oRA8O9EYg51K5RqCSYK3uFW9to1sr5Xz0Bfl06juv8GfCMppdmnKcR5q6VlppwdRCNSfK5lRKRmf22Q-Qj4Yzs0g2T5LNItk8Sp5zX57lrB9hkTNm8OHV9NdT2keX8gB_Uw69GeEYUnYZovXFiJdb_AOB8Zoo
CitedBy_id crossref_primary_10_1109_TCST_2024_3365996
crossref_primary_10_1109_TAC_2021_3123224
crossref_primary_10_1007_s10898_020_00913_z
crossref_primary_10_1007_s40306_021_00437_y
crossref_primary_10_1007_s00186_019_00677_7
crossref_primary_10_1109_TAC_2022_3216967
crossref_primary_10_1137_23M1608227
crossref_primary_10_1155_2022_8999757
Cites_doi 10.1142/8527
10.1007/978-0-387-68407-9
10.1007/978-3-642-18351-5
10.1007/s00186-016-0554-0
10.1007/s10898-013-0098-2
10.1137/060674831
10.1023/A:1008215702611
ContentType Journal Article
Copyright 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
2018 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
– notice: 2018 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/02331934.2018.1518447
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4945
EndPage 2054
ExternalDocumentID 10_1080_02331934_2018_1518447
1518447
Genre Article
GrantInformation_xml – fundername: German Research Foundation (DFG)
  grantid: LO-1379/7-1
  funderid: 10.13039/501100001659
GroupedDBID .7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-7bf70eef7b03eea89b1657b0a7353dafa963e1148f53e84acc9d817c597c44233
IEDL.DBID TFW
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000486083500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0233-1934
IngestDate Wed Aug 13 04:05:57 EDT 2025
Sat Nov 29 06:01:40 EST 2025
Tue Nov 18 22:26:14 EST 2025
Mon Oct 20 23:48:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-7bf70eef7b03eea89b1657b0a7353dafa963e1148f53e84acc9d817c597c44233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2289893083
PQPubID 27961
PageCount 16
ParticipantIDs crossref_primary_10_1080_02331934_2018_1518447
crossref_citationtrail_10_1080_02331934_2018_1518447
informaworld_taylorfrancis_310_1080_02331934_2018_1518447
proquest_journals_2289893083
PublicationCentury 2000
PublicationDate 2019-10-03
PublicationDateYYYYMMDD 2019-10-03
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-03
  day: 03
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Optimization
PublicationYear 2019
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References Rockafellar R. (CIT0002) 1972
Ciripoi D (CIT0014) 2017
CIT0010
CIT0001
CIT0011
CIT0003
CIT0007
CIT0009
CIT0008
References_xml – year: 2017
  ident: CIT0014
  publication-title: J Global Optim
– ident: CIT0003
  doi: 10.1142/8527
– ident: CIT0007
  doi: 10.1007/978-0-387-68407-9
– ident: CIT0010
  doi: 10.1007/978-3-642-18351-5
– ident: CIT0001
  doi: 10.1007/s00186-016-0554-0
– ident: CIT0009
  doi: 10.1007/s10898-013-0098-2
– ident: CIT0011
  doi: 10.1137/060674831
– volume-title: Convex analysis
  year: 1972
  ident: CIT0002
– ident: CIT0008
  doi: 10.1023/A:1008215702611
SSID ssj0021624
Score 2.274435
Snippet The article deals with operations defined on convex polyhedra or polyhedral convex functions. Given two convex polyhedra, operations like Minkowski sum,...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2039
SubjectTerms Affine transformations
Calculus
Computational geometry
Convex analysis
Convexity
Hulls
Linear programming
Mathematical analysis
Multiple objective analysis
multiple objective linear programming
Polyhedra
polyhedral convex analysis
polyhedral set
Polyhedron
polyhedron computations
Representations
Title Calculus of convex polyhedra and polyhedral convex functions by utilizing a multiple objective linear programming solver
URI https://www.tandfonline.com/doi/abs/10.1080/02331934.2018.1518447
https://www.proquest.com/docview/2289893083
Volume 68
WOSCitedRecordID wos000486083500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1029-4945
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021624
  issn: 0233-1934
  databaseCode: TFW
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADb0ShIA-sKUmcl0dUUTGgiqGIbpGT2KIotFUSUMuv585xSiuEOsBoJedE9nf33VnnO0KusRMNFy63pMQWZoHNLB5yZQHZ-ioSNneV3umHcDCIRiP-aLIJS5NWiTG0qgtFaFuNyi2SssmIuwGaAeAwPBFxoi5QVuR5eJ8cqB9Vc9h_XoZcTqDb2qKEhSLNHZ7fZlljp7XapT9stSag_v4__PoB2TPeJ72t4XJItuTkiOyu1CQ8JvOeyPFIsKRTRXVO-pzOpvniRWaFoPDh71HePEdy1PilyYICkvPxJ8xFBW3SFek0ea0tK8WfFgU1eWFv-B7AHxTqhDz174a9e8u0Z7BSiGsrK0xUaEupwsRmUoqIJ07gw0CEzGeZUAJ0W2K4pXwmI0-kKc8iJ0whhEk98OLYKWlNphN5RmiWOcKPRAK-nu-pAEASuJkCz8p1pHCztE28Zlvi1NQuxxYaeew0JU7Nwsa4sLFZ2DbpLsVmdfGOTQJ8dc_jSp-aqLrFScw2yHYagMTGDpSx62J7TgZ-7vkfpr4gOzDkOoeQdUirKt7lJdlOP6pxWVxpxH8B5Kv9Hw
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8IwFG8UTdSD30YUtQevQ7buq0dDJBiRE0ZuTbe1ETOBABrwr_e9bkOIMRz02HSva9r3ndf3I-QakWi4dLilFEKY-TVm8YBrC4ytp0NZ4442N90K2u2w2-WLb2GwrBJjaJ01ijC6GoUbk9FFSdwN2BngHIYpETusgs0KXTdYJxse2Frsn99pPM-DLts3wLZIYiFN8Yrnt2WW7NNS99If2tqYoMbef2x-n-zmDii9zTjmgKyp_iHZWWhLeESmdZliVnBMB5qasvQpHQ7S2YtKRpLCn79HaTGP9tGwMI1mFJg57X3CWlTSomKRDqLXTLlS3LUc0bw07A2_AwkAmTomT427Tr1p5QgNVgyh7cQKIh3UlNJBVGNKyZBHtu_BQAbMY4nUEsRbYcSlPaZCV8YxT0I7iCGKiV1w5NgJKfUHfXVKaJLY0gtlBO6e52of-MR3Eg3OlWMr6SRxmbjFvYg4b1-OKBqpsIsup_nBCjxYkR9smVTnZMOsf8cqAr546WJiEic6QzkRbAVtpeAQkauCsXAcROhk4Oqe_WHpK7LV7Dy2ROu-_XBOtmGKm5JCViGlyehdXZDN-GPSG48uDft_AesoAVg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8IwFG8UjdGD30YUtQevQ7buq0eDEo2EcMDIrem2NmImkDEN-Nf72nUKMYaDHpvudU376_tofn0PoUtViYZyh1pCqBJmfoNYNKDSAmPryZA3qCP1TreDTifs92nXsAknhlapYmhZJIrQulod7nEiS0bcFZgZAA5RNyJ2WAeTFbpusIrWwHX2Fch7raevmMv2dV1bJWIpmfIRz2_DLJinheSlP5S1tkCtnX-Y-y7aNu4nvi7wsodWxHAfbc0lJTxA0yZP1Z3gBI8k1qT0KR6P0tmzSDKO4cffrbTsV9ZRAxhHMwxQTgcfMBbmuOQr4lH0UqhWrCbNM2yIYa_qO8A_nKhD9Ni67TXvLFOfwYohsM2tIJJBQwgZRA0iBA9pZPseNHhAPJJwyeFwCxVvSY-I0OVxTJPQDmKIYWIX3DhyhCrD0VAcI5wkNvdCHoGz57nSB5T4TiLBtXJswZ0kriK33BYWm-TlqoZGyuwyx6lZWKYWlpmFraL6l9i4yN6xTIDO7znL9bWJLGqcMLJEtlYChBlFMGGOo-pzEnB0T_4w9AXa6N60WPu-83CKNqGHaj4hqaFKnr2JM7Qev-eDSXauwf8J4AgACg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calculus+of+convex+polyhedra+and+polyhedral+convex+functions+by+utilizing+a+multiple+objective+linear+programming+solver&rft.jtitle=Optimization&rft.au=Ciripoi%2C+Daniel&rft.au=L%C3%B6hne%2C+Andreas&rft.au=Wei%C3%9Fing%2C+Benjamin&rft.date=2019-10-03&rft.pub=Taylor+%26+Francis&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=68&rft.issue=10&rft.spage=2039&rft.epage=2054&rft_id=info:doi/10.1080%2F02331934.2018.1518447&rft.externalDocID=1518447
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon