Calculus of convex polyhedra and polyhedral convex functions by utilizing a multiple objective linear programming solver

The article deals with operations defined on convex polyhedra or polyhedral convex functions. Given two convex polyhedra, operations like Minkowski sum, intersection and closed convex hull of the union are considered. Basic operations for one convex polyhedron are, for example, the polar, the conica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization Jg. 68; H. 10; S. 2039 - 2054
Hauptverfasser: Ciripoi, Daniel, Löhne, Andreas, Weißing, Benjamin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia Taylor & Francis 03.10.2019
Taylor & Francis LLC
Schlagworte:
ISSN:0233-1934, 1029-4945
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The article deals with operations defined on convex polyhedra or polyhedral convex functions. Given two convex polyhedra, operations like Minkowski sum, intersection and closed convex hull of the union are considered. Basic operations for one convex polyhedron are, for example, the polar, the conical hull and the image under affine transformation. The concept of a P-representation of a convex polyhedron is introduced. It is shown that many polyhedral calculus operations can be expressed explicitly in terms of P-representations. We point out that all the relevant computational effort for polyhedral calculus consists in computing projections of convex polyhedra. In order to compute projections we use a recent result saying that multiple objective linear programming (MOLP) is equivalent to the polyhedral projection problem. Based on the MOLP solver bensolve a polyhedral calculus toolbox for Matlab and GNU Octave is developed. Some numerical experiments are discussed.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2018.1518447