Discrete-time sliding-surface based control of parametrically uncertain nonlinear systems with unknown time-delay and inaccessible switching mode detection

This paper focuses on proposing a novel method regarding general tracking control of discrete high-order parametrically uncertain systems with unknown arbitrary switching signals and unknowable time-delay. To this end, a common Lyapunov-Krasovski function (CLKF) is designed based on the sliding hype...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of control Ročník 94; číslo 3; s. 623 - 642
Hlavní autoři: Homaeinezhad, M. R., Yaqubi, S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 04.03.2021
Taylor & Francis Ltd
Témata:
ISSN:0020-7179, 1366-5820
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper focuses on proposing a novel method regarding general tracking control of discrete high-order parametrically uncertain systems with unknown arbitrary switching signals and unknowable time-delay. To this end, a common Lyapunov-Krasovski function (CLKF) is designed based on the sliding hyper-plane featuring individual subsystems in various switching cases. Investigating the proposed function, the necessary conditions for achieving control objectives are obtained in order to ensure stability and finite-time convergence to an invariant set over various modes of an uncertain arbitrary switching signal. Despite constructing the control algorithm for general switched systems, the selection of control signal is based on appropriately calculated input bounds rather than a switching term itself, resulting in no chattering effects in control input. Subsequently, the effectiveness and accuracy of the proposed control method is verified using numerical and experimental examples.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0020-7179
1366-5820
DOI:10.1080/00207179.2019.1605205