Robust optimality conditions and duality for nonsmooth multiobjective fractional semi-infinite programming problems with uncertain data

In this article, some Karush-Kuhn-Tucker type robust optimality conditions and duality for an uncertain nonsmooth multiobjective fractional semi-infinite programming problem ((UMFP), for short) are established. First, we provide, by combining robust optimization and the robust limiting constraint qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization Jg. 72; H. 7; S. 1745 - 1775
Hauptverfasser: Thu Thuy, Nguyen Thi, Van Su, Tran
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia Taylor & Francis 03.07.2023
Taylor & Francis LLC
Schlagworte:
ISSN:0233-1934, 1029-4945
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, some Karush-Kuhn-Tucker type robust optimality conditions and duality for an uncertain nonsmooth multiobjective fractional semi-infinite programming problem ((UMFP), for short) are established. First, we provide, by combining robust optimization and the robust limiting constraint qualification, robust necessary optimality conditions in terms of Mordukhovich's subdifferentials. Under suitable assumptions on the generalized convexity/the strictly generalized convexity, robust necessary optimality condition becomes robust sufficient optimality condition. Second, we formulate types of Mond-Weir and Wolfe robust dual problem for (UMFP) via the Mordukhovich subdifferentials. Finally, as an application, we establish weak/strong/converse robust duality theorems for the problem (UMFP) and its Mond-Weir and Wolfe types dual problem. Some illustrative examples are also provided for our findings.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2022.2038154