Solving a continuous multifacility location problem by DC algorithms

The paper presents a new approach to solve multifacility location problems, which is based on mixed integer programming and algorithms for minimizing differences of convex (DC) functions. The main challenges for solving the multifacility location problems under consideration come from their intrinsi...

Full description

Saved in:
Bibliographic Details
Published in:Optimization methods & software Vol. 37; no. 1; pp. 338 - 360
Main Authors: Bajaj, Anuj, Mordukhovich, Boris S., Nam, Nguyen Mau, Tran, Tuyen
Format: Journal Article
Language:English
Published: Abingdon Taylor & Francis 02.01.2022
Taylor & Francis Ltd
Subjects:
ISSN:1055-6788, 1029-4937
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The paper presents a new approach to solve multifacility location problems, which is based on mixed integer programming and algorithms for minimizing differences of convex (DC) functions. The main challenges for solving the multifacility location problems under consideration come from their intrinsic discrete, nonconvex, and nondifferentiable nature. We provide a reformulation of these problems as those of continuous optimization and then develop a new DC type algorithm for their solutions involving Nesterov's smoothing. The proposed algorithm is computationally implemented via MATLAB numerical tests on both artificial and real data sets.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1055-6788
1029-4937
DOI:10.1080/10556788.2020.1771335