A hybrid genetic programming algorithm for the distributed assembly scheduling problems with transportation and sequence-dependent setup times

This paper investigates a distributed assembly permutation flow-shop scheduling problem with transportation and sequence-dependent set-up times (DAPFSP-TSDST). A hybrid genetic programming (HGP) algorithm is proposed to optimize the makespan of the assembly stage, which inherits the merits of geneti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering optimization Jg. 57; H. 3; S. 786 - 812
Hauptverfasser: Deng, Jiawen, Zhang, Jihui, Yang, Shengxiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Taylor & Francis 04.03.2025
Taylor & Francis Ltd
Schlagworte:
ISSN:0305-215X, 1029-0273
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates a distributed assembly permutation flow-shop scheduling problem with transportation and sequence-dependent set-up times (DAPFSP-TSDST). A hybrid genetic programming (HGP) algorithm is proposed to optimize the makespan of the assembly stage, which inherits the merits of genetic programming (GP) and neighbourhood search operators. In HGP, a hybrid problem-specific initialization heuristic is developed to make populations more diverse. Multiple neighbourhood search operators are employed as the leaf nodes, which are vital for the success of GP. A product shift strategy is proposed to strengthen its exploitability. In addition, a simulated annealing criterion is adopted to make the HGP explore more thoroughly. Finally, statistical and computational experiments are carried out on the benchmark instances. The results exhaustively identify the notable competitiveness of the HGP algorithm in coping with the DAPFSP-TSDST.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0305-215X
1029-0273
DOI:10.1080/0305215X.2024.2335284