Variants of the A-HPE and large-step A-HPE algorithms for strongly convex problems with applications to accelerated high-order tensor methods
For solving strongly convex optimization problems, we propose and study the global convergence of variants of the accelerated hybrid proximal extragradient (A-HPE) and large-step A-HPE algorithms of R.D.C. Monteiro and B.F. Svaiter [An accelerated hybrid proximal extragradient method for convex opti...
Uložené v:
| Vydané v: | Optimization methods & software Ročník 37; číslo 6; s. 2007 - 2037 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Abingdon
Taylor & Francis
02.11.2022
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 1055-6788, 1029-4937 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | For solving strongly convex optimization problems, we propose and study the global convergence of variants of the accelerated hybrid proximal extragradient (A-HPE) and large-step A-HPE algorithms of R.D.C. Monteiro and B.F. Svaiter [An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methods, SIAM J. Optim. 23 (2013), pp. 1092-1125.]. We prove linear and the superlinear
$ \mathcal {O}\left (k^{\,-k\left (\frac {p-1}{p+1}\right )}\right ) $
O
(
k
−
k
(
p
−
1
p
+
1
)
)
global rates for the proposed variants of the A-HPE and large-step A-HPE methods, respectively. The parameter
$ p\geq ~2 $
p
≥
2
appears in the (high-order) large-step condition of the new large-step A-HPE algorithm. We apply our results to high-order tensor methods, obtaining a new inexact (relative-error) tensor method for (smooth) strongly convex optimization with iteration-complexity
$ \mathcal {O}\left (k^{\,-k\left (\frac {p-1}{p+1}\right )}\right ) $
O
(
k
−
k
(
p
−
1
p
+
1
)
)
. In particular, for p = 2, we obtain an inexact proximal-Newton algorithm with fast global
$ \mathcal {O}\left (k^{\,-k/3}\right ) $
O
(
k
−
k
/
3
)
convergence rate. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1055-6788 1029-4937 |
| DOI: | 10.1080/10556788.2021.2022148 |