A generalized conditional gradient method for multiobjective composite optimization problems

This article deals with multiobjective composite optimization problems that consist of simultaneously minimizing several objective functions, each of which is composed of a combination of smooth and non-smooth functions. To tackle these problems, we propose a generalized version of the conditional g...

Full description

Saved in:
Bibliographic Details
Published in:Optimization Vol. 74; no. 2; pp. 473 - 503
Main Authors: Assunção, P. B., Ferreira, O. P., Prudente, L. F.
Format: Journal Article
Language:English
Published: Philadelphia Taylor & Francis 25.01.2025
Taylor & Francis LLC
Subjects:
ISSN:0233-1934, 1029-4945
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This article deals with multiobjective composite optimization problems that consist of simultaneously minimizing several objective functions, each of which is composed of a combination of smooth and non-smooth functions. To tackle these problems, we propose a generalized version of the conditional gradient method, also known as Frank-Wolfe method. The method is analysed with three step size strategies, including Armijo-type, adaptive, and diminishing step sizes. We establish asymptotic convergence properties and iteration-complexity bounds, with and without convexity assumptions on the objective functions. Numerical experiments illustrating the practical behaviour of the methods are presented.
AbstractList This article deals with multiobjective composite optimization problems that consist of simultaneously minimizing several objective functions, each of which is composed of a combination of smooth and non-smooth functions. To tackle these problems, we propose a generalized version of the conditional gradient method, also known as Frank-Wolfe method. The method is analysed with three step size strategies, including Armijo-type, adaptive, and diminishing step sizes. We establish asymptotic convergence properties and iteration-complexity bounds, with and without convexity assumptions on the objective functions. Numerical experiments illustrating the practical behaviour of the methods are presented.
Author Prudente, L. F.
Ferreira, O. P.
Assunção, P. B.
Author_xml – sequence: 1
  givenname: P. B.
  surname: Assunção
  fullname: Assunção, P. B.
  organization: Universidade Federal de Goiás
– sequence: 2
  givenname: O. P.
  orcidid: 0000-0002-5758-0320
  surname: Ferreira
  fullname: Ferreira, O. P.
  email: orizon@ufg.br
  organization: Universidade Federal de Goiás
– sequence: 3
  givenname: L. F.
  orcidid: 0000-0003-1098-4317
  surname: Prudente
  fullname: Prudente, L. F.
  organization: Universidade Federal de Goiás
BookMark eNqFkM1LwzAchoNMcJv-CULBc2e-mrZ4cYhfMPCyoxDSNJkZaTOTTNn-elM3Lx70lMDvfX7J-0zAqHe9AuASwRmCFbyGmBBUEzrD6TbDuChLWJ-AMYK4zmlNixEYD5l8CJ2BSQhrCDFimI7B6zxbqV55Yc1etZl0fWuicb2w2cqL1qg-Zp2Kb67NtPNZt7Vp2qyVjOZDpXi3ccFElblNNJ3Zi4HNNt41VnXhHJxqYYO6OJ5TsHy4X9495YuXx-e7-SKXhFQxpwWjjWoqDUklG121BZWUiZKkPrRGgpVpUCBZIgYxFrXWjSo1aZisYSMlmYKrw9r07vtWhcjXbutThcAJYhSWhFGWUsUhJb0LwSvNN950wu84gnzwyH888sEjP3pM3M0vTpr43TN6Yey_9O2BNn3y14lP523Lo9hZ57UXvTTDJ_9c8QUd048O
CitedBy_id crossref_primary_10_1007_s10589_024_00577_5
crossref_primary_10_1016_j_orl_2025_107366
crossref_primary_10_1007_s11075_025_02009_9
crossref_primary_10_1007_s10957_025_02630_7
crossref_primary_10_1007_s10957_025_02737_x
crossref_primary_10_1007_s10589_025_00711_x
Cites_doi 10.1137/15M1016424
10.1007/s00291-015-0418-7
10.1007/s10898-007-9265-7
10.1137/100784746
10.1007/s11590-022-01877-7
10.1137/18M1191737
10.1080/02331934.2018.1440553
10.1137/08071692X
10.1145/3342104
10.1007/s10589-017-9928-3
10.1016/j.ejor.2007.05.015
10.1137/S1052623496307510
10.1162/106365602760234108
10.1016/j.cam.2004.06.018
10.1137/17M1126588
10.1080/10556788.2018.1510928
10.1016/0022-247X(68)90201-1
10.1162/106365600568202
10.1007/s10107-015-0962-6
10.1007/s10589-018-0043-x
10.1137/16M1096505
10.1016/0041-5553(66)90114-5
10.1023/A:1017536311488
10.1080/02331934.2020.1800699
10.1007/s10589-022-00414-7
10.1007/s10589-020-00260-5
10.1007/s001860000043
10.1109/TEVC.2005.861417
10.1080/02331934.2014.947500
10.1137/10079731X
10.1007/s00158-004-0465-1
10.1007/s10957-022-02072-5
10.1137/18M1173277
10.1002/nav.v3:1/2
10.1007/s101070100263
10.1080/02331934.2010.522710
10.1007/s10589-012-9501-z
10.1137/120866415
10.1007/s10898-019-00802-0
10.1016/j.ejor.2013.10.028
10.1023/B:COAP.0000018877.86161.8b
10.1007/s10589-007-9083-3
10.1007/s001860300327
10.1007/11844297_52
10.1145/355934.355936
10.1137/16M107534X
10.1016/j.ejor.2014.03.013
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/02331934.2023.2257709
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4945
EndPage 503
ExternalDocumentID 10_1080_02331934_2023_2257709
2257709
Genre Research Article
GrantInformation_xml – fundername: CNPq
  grantid: 304666/2021-1, 305158/2014-7; 302473/2017-3
GroupedDBID .7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-4564beb8f038cbf8d54c46a73202491a6703851c716022a9ffbe7f3b6c90bcc3
IEDL.DBID TFW
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001119209100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0233-1934
IngestDate Wed Aug 13 06:42:38 EDT 2025
Tue Nov 18 21:32:28 EST 2025
Sat Nov 29 06:01:43 EST 2025
Mon Oct 20 23:45:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-4564beb8f038cbf8d54c46a73202491a6703851c716022a9ffbe7f3b6c90bcc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1098-4317
0000-0002-5758-0320
PQID 3164073646
PQPubID 27961
PageCount 31
ParticipantIDs proquest_journals_3164073646
crossref_primary_10_1080_02331934_2023_2257709
crossref_citationtrail_10_1080_02331934_2023_2257709
informaworld_taylorfrancis_310_1080_02331934_2023_2257709
PublicationCentury 2000
PublicationDate 2025-01-25
PublicationDateYYYYMMDD 2025-01-25
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-25
  day: 25
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Optimization
PublicationYear 2025
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References Bertsekas D (e_1_3_3_37_1) 2003
e_1_3_3_52_1
e_1_3_3_50_1
Polyak BT. (e_1_3_3_38_1) 1987
e_1_3_3_18_1
e_1_3_3_39_1
Ansary MAT. (e_1_3_3_29_1) 2023; 0
e_1_3_3_14_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_56_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_54_1
e_1_3_3_40_1
e_1_3_3_61_1
e_1_3_3_7_1
e_1_3_3_9_1
e_1_3_3_25_1
e_1_3_3_48_1
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
Stadler W (e_1_3_3_58_1) 1993; 150
e_1_3_3_30_1
e_1_3_3_51_1
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_13_1
e_1_3_3_59_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_57_1
e_1_3_3_34_1
e_1_3_3_55_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_53_1
e_1_3_3_41_1
e_1_3_3_62_1
e_1_3_3_60_1
e_1_3_3_6_1
e_1_3_3_8_1
e_1_3_3_28_1
e_1_3_3_24_1
e_1_3_3_49_1
e_1_3_3_26_1
e_1_3_3_47_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_45_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_43_1
References_xml – ident: e_1_3_3_16_1
  doi: 10.1137/15M1016424
– volume: 0
  start-page: 1
  issue: 0
  year: 2023
  ident: e_1_3_3_29_1
  article-title: A Newton-type proximal gradient method for nonlinear multi-objective optimization problems
  publication-title: Optim Methods Softw
– ident: e_1_3_3_47_1
  doi: 10.1007/s00291-015-0418-7
– ident: e_1_3_3_59_1
  doi: 10.1007/s10898-007-9265-7
– ident: e_1_3_3_53_1
  doi: 10.1137/100784746
– ident: e_1_3_3_26_1
  doi: 10.1007/s11590-022-01877-7
– ident: e_1_3_3_22_1
  doi: 10.1137/18M1191737
– ident: e_1_3_3_39_1
– ident: e_1_3_3_24_1
  doi: 10.1080/02331934.2018.1440553
– ident: e_1_3_3_15_1
  doi: 10.1137/08071692X
– ident: e_1_3_3_44_1
  doi: 10.1145/3342104
– ident: e_1_3_3_43_1
  doi: 10.1007/s10589-017-9928-3
– ident: e_1_3_3_56_1
  doi: 10.1016/j.ejor.2007.05.015
– ident: e_1_3_3_40_1
– ident: e_1_3_3_49_1
  doi: 10.1137/S1052623496307510
– ident: e_1_3_3_54_1
  doi: 10.1162/106365602760234108
– ident: e_1_3_3_9_1
  doi: 10.1016/j.cam.2004.06.018
– ident: e_1_3_3_51_1
– ident: e_1_3_3_18_1
  doi: 10.1137/17M1126588
– ident: e_1_3_3_5_1
  doi: 10.1080/10556788.2018.1510928
– ident: e_1_3_3_2_1
  doi: 10.1016/0022-247X(68)90201-1
– ident: e_1_3_3_60_1
– ident: e_1_3_3_61_1
  doi: 10.1162/106365600568202
– volume-title: Introduction to optimization
  year: 1987
  ident: e_1_3_3_38_1
– ident: e_1_3_3_13_1
  doi: 10.1007/s10107-015-0962-6
– volume-title: Convex analysis and optimization
  year: 2003
  ident: e_1_3_3_37_1
– ident: e_1_3_3_23_1
  doi: 10.1007/s10589-018-0043-x
– ident: e_1_3_3_20_1
  doi: 10.1137/16M1096505
– ident: e_1_3_3_32_1
  doi: 10.1016/0041-5553(66)90114-5
– ident: e_1_3_3_36_1
– ident: e_1_3_3_30_1
– ident: e_1_3_3_50_1
  doi: 10.1023/A:1017536311488
– ident: e_1_3_3_25_1
  doi: 10.1080/02331934.2020.1800699
– ident: e_1_3_3_28_1
– ident: e_1_3_3_17_1
  doi: 10.1007/s10589-022-00414-7
– ident: e_1_3_3_33_1
  doi: 10.1007/s10589-020-00260-5
– ident: e_1_3_3_3_1
  doi: 10.1007/s001860000043
– ident: e_1_3_3_48_1
  doi: 10.1109/TEVC.2005.861417
– volume: 150
  start-page: 209
  year: 1993
  ident: e_1_3_3_58_1
  article-title: Multicriteria optimization in engineering: a tutorial and survey
  publication-title: Progr Astronaut Aero
– ident: e_1_3_3_11_1
  doi: 10.1080/02331934.2014.947500
– ident: e_1_3_3_14_1
  doi: 10.1137/10079731X
– ident: e_1_3_3_27_1
– ident: e_1_3_3_52_1
  doi: 10.1007/s00158-004-0465-1
– ident: e_1_3_3_19_1
  doi: 10.1007/s10957-022-02072-5
– ident: e_1_3_3_21_1
  doi: 10.1137/18M1173277
– ident: e_1_3_3_31_1
  doi: 10.1002/nav.v3:1/2
– ident: e_1_3_3_62_1
  doi: 10.1007/s101070100263
– ident: e_1_3_3_6_1
  doi: 10.1080/02331934.2010.522710
– ident: e_1_3_3_7_1
  doi: 10.1007/s10589-012-9501-z
– ident: e_1_3_3_4_1
  doi: 10.1137/120866415
– ident: e_1_3_3_10_1
  doi: 10.1007/s10898-019-00802-0
– ident: e_1_3_3_46_1
  doi: 10.1016/j.ejor.2013.10.028
– ident: e_1_3_3_42_1
– ident: e_1_3_3_34_1
– ident: e_1_3_3_8_1
  doi: 10.1023/B:COAP.0000018877.86161.8b
– ident: e_1_3_3_35_1
  doi: 10.1007/s10589-007-9083-3
– ident: e_1_3_3_41_1
  doi: 10.1007/s001860300327
– ident: e_1_3_3_57_1
  doi: 10.1007/11844297_52
– ident: e_1_3_3_55_1
  doi: 10.1145/355934.355936
– ident: e_1_3_3_12_1
  doi: 10.1137/16M107534X
– ident: e_1_3_3_45_1
  doi: 10.1016/j.ejor.2014.03.013
SSID ssj0021624
Score 2.4109514
Snippet This article deals with multiobjective composite optimization problems that consist of simultaneously minimizing several objective functions, each of which is...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 473
SubjectTerms Asymptotic methods
Conditional gradient method
constrained optimization problem
Convexity
Frank-Wolfe method
multiobjective optimization
Multiple objective analysis
Optimization
Pareto optimality
Title A generalized conditional gradient method for multiobjective composite optimization problems
URI https://www.tandfonline.com/doi/abs/10.1080/02331934.2023.2257709
https://www.proquest.com/docview/3164073646
Volume 74
WOSCitedRecordID wos001119209100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1029-4945
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021624
  issn: 0233-1934
  databaseCode: TFW
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA1SPOjBb7FaJQevqfuRJptjEYsHKR4K9iAsSTYpFW2lu3rw15vJZkuLSA_6AyaEyWQmk7y8h9B1lIikcIWUAFs3oZYzIpQxpEd5oVQsVWI8z-wDHw6z8Vg8BjRhGWCV0EPbmijC52rY3FKVDSLuxpUZFzgp3IgkadcFJOf-C58r_bA1R4OnZcsVMy9rCxYETJo_PL-Nslad1rhLf-RqX4AG-_8w9QO0F06fuF-HyyHaMrMjtLvCSXiMnvt4UlNRT79MgV27XEzr-0I8WXh8WIVr2Wnspo09IHGuXuq8iQGhDjAwg-cuF72FT544yNaUJ2g0uBvd3pMgwUC0610rAmQzyqjMRmmmlc2KHtWUSQ6q61TEknF4WYy167rcYUAKa5XhNlVMi0hpnZ6i1mw-M2cI0ywqGLeZ1JJSY4RrLAvtzkNFEnEhTdZGtPF8rgM9OahkvOZxw2IafJeD7_LguzbqLs3ea36OTQZidVnzyl-M2FrFJE832HaaGMjDVgcTeAtNGWXnfxj6Au0koCwcxSTpdVCrWnyYS7StP6tpubjyQf0N1yTyVA
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA6ignrwLVar5uA1dR_ZzeZYxFKx9rRgD8KyeZWKttKuHvz1ZrK7pUWkB_0BE8JkMpOZzHwfQtdewANlAykBtG5CDYsJF1qTiDIlhJ-LQDuc2R7r95PBgC_OwkBbJeTQpgSKcL4aLjcUo-uWuBsbZ6zlhFASCcKWtUjGYIZvI7KxFvDz087TPOnyY0dsCyIEZOopnt-WWYpPS-ilP7y1C0Gdvf_Y_D7arR6guF1azAFa0-NDtLMAS3iEntt4WKJRj760wjZjVqOyZIiHU9ciVuCSeRrbfWPXkzgRL6XrxNCkDp1gGk-sO3qr5jxxxVwzO0Zp5y697ZKKhYFIm74WBPBmhBaJ8cJECpOoiEoa5wyI1yn385jB56IvbeJl3wM5N0ZoZkIRS-4JKcMTtD6ejPUpwjTxVMxMksucUq25zS2VtE8iFXiM5zppIFqrPpMVQjkQZbxmfg1kWukuA91lle4aqDUXey8hOlYJ8MVzzQpXGzElkUkWrpBt1kaQVbcdROA7NIxpfPaHpa_QVjd97GW9-_7DOdoOgGjY80kQNdF6Mf3QF2hTfhaj2fTSWfg3Obf2fg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSgMxFA2iIrrwLb7Nwm10HmkyWYo6KEpxUbALYZi8pKJtaUcXfr25k0ypiHShH3DDcOfmPpKTcxA6jRKRaFdICbB1E2o5I0IaQ1qUaynjUiam5pm95-121u2Kh4AmHAdYJczQ1hNF1LkaNvdQ2wYRd-7KjAucFE5EkvTMBSTn8IRvwbXODIK8kz9OZq6Y1bq2YELApnnE89sy38rTN_LSH8m6rkD52j98-zpaDe0nvvDxsoHmTH8TrUyREm6hpwv87Lmoe59GYzcv654_MMTPoxogVmGvO43dZ-MakTiQLz5xYoCoAw7M4IFLRm_hlScOujXjbdTJrzuXNyRoMBDlhteKANuMNDKzUZopaTPdooqykoPsOhVxyThcLcbKjV2uGyiFtdJwm0qmRCSVSnfQfH_QN7sI0yzSjNusVCWlxgg3WWrlGiKdRFyUJttDtPF8oQI_OchkvBZxQ2MafFeA74rguz10NjEbeoKOWQZi-rcWVX0yYr2MSZHOsD1sYqAIex1M4DI0ZZTt_2HpE7T0cJUX97ftuwO0nIDKcBSTpHWI5qvRuzlCi-qj6o1Hx3V8fwFTifUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalized+conditional+gradient+method+for+multiobjective+composite+optimization+problems&rft.jtitle=Optimization&rft.au=Assun%C3%A7%C3%A3o%2C+P+B&rft.au=Ferreira%2C+O+P&rft.au=Prudente%2C+L+F&rft.date=2025-01-25&rft.pub=Taylor+%26+Francis+LLC&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=74&rft.issue=2&rft.spage=473&rft.epage=503&rft_id=info:doi/10.1080%2F02331934.2023.2257709&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon