A Rate of Metastability for the Halpern Type Proximal Point Algorithm

Using proof-theoretical techniques, we analyze a proof by Hong-Kun Xu regarding a result of strong convergence for the Halpern type proximal point algorithm. We obtain a rate of metastability (in the sense of Terence Tao) and also a rate of asymptotic regularity for the iteration. Furthermore, our f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical functional analysis and optimization Jg. 42; H. 3; S. 320 - 343
1. Verfasser: Pinto, Pedro
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Taylor & Francis 17.02.2021
Taylor & Francis Ltd
Schlagworte:
ISSN:0163-0563, 1532-2467
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using proof-theoretical techniques, we analyze a proof by Hong-Kun Xu regarding a result of strong convergence for the Halpern type proximal point algorithm. We obtain a rate of metastability (in the sense of Terence Tao) and also a rate of asymptotic regularity for the iteration. Furthermore, our final quantitative result bypasses the sequential weak compactness argument present in the original proof. This elimination is reflected in the extraction of primitive recursive quantitative information. This work follows from recent results in Proof Mining regarding the removal of sequential weak compactness arguments.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0163-0563
1532-2467
DOI:10.1080/01630563.2021.1876726