A Rate of Metastability for the Halpern Type Proximal Point Algorithm

Using proof-theoretical techniques, we analyze a proof by Hong-Kun Xu regarding a result of strong convergence for the Halpern type proximal point algorithm. We obtain a rate of metastability (in the sense of Terence Tao) and also a rate of asymptotic regularity for the iteration. Furthermore, our f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical functional analysis and optimization Ročník 42; číslo 3; s. 320 - 343
Hlavní autor: Pinto, Pedro
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 17.02.2021
Taylor & Francis Ltd
Témata:
ISSN:0163-0563, 1532-2467
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Using proof-theoretical techniques, we analyze a proof by Hong-Kun Xu regarding a result of strong convergence for the Halpern type proximal point algorithm. We obtain a rate of metastability (in the sense of Terence Tao) and also a rate of asymptotic regularity for the iteration. Furthermore, our final quantitative result bypasses the sequential weak compactness argument present in the original proof. This elimination is reflected in the extraction of primitive recursive quantitative information. This work follows from recent results in Proof Mining regarding the removal of sequential weak compactness arguments.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0163-0563
1532-2467
DOI:10.1080/01630563.2021.1876726