Characterizations of multiobjective robustness on vectorization counterparts

In this paper, we characterize robust solutions for uncertain multiobjective optimization problems on the basis of vectorization models by virtue of image space analysis. By introducing corrected image of original uncertain problem or the selected and corrected images of its robust counterpart, an e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization Jg. 69; H. 3; S. 493 - 518
Hauptverfasser: Wei, Hong-Zhi, Chen, Chun-Rong, Li, Sheng-Jie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia Taylor & Francis 03.03.2020
Taylor & Francis LLC
Schlagworte:
ISSN:0233-1934, 1029-4945
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we characterize robust solutions for uncertain multiobjective optimization problems on the basis of vectorization models by virtue of image space analysis. By introducing corrected image of original uncertain problem or the selected and corrected images of its robust counterpart, an equivalent relation between multiobjective robustness and the separation of two sets in the image space is well established. Moreover, by means of linear (vector/scalar) separation functions, some Lagrangian-type sufficient robust optimality conditions are presented. Especially, under suitable restriction assumptions, we derive Lagrangian-type necessary robust optimality conditions in terms of nonlinear separation functions. These results obtained in this paper extend and improve some existing ones recently. Finally, several examples are given to show the effectiveness of the conclusions.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2019.1625352