The method of fundamental solution for the inverse source problem for the space-fractional diffusion equation

In this article, a meshless numerical method for solving the inverse source problem of the space-fractional diffusion equation is proposed. The numerical solution is approximated using the fundamental solution of the space-fractional diffusion equation as a basis function. Since the resulting matrix...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Inverse problems in science and engineering Ročník 26; číslo 7; s. 925 - 941
Hlavní autoři: Wen, Jin, Cheng, Jun-Feng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis 03.07.2018
Témata:
ISSN:1741-5977, 1741-5985
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this article, a meshless numerical method for solving the inverse source problem of the space-fractional diffusion equation is proposed. The numerical solution is approximated using the fundamental solution of the space-fractional diffusion equation as a basis function. Since the resulting matrix equation is extremely ill-conditioned, a regularized solution is obtained by adopting the Tikhonov regularization scheme, in which the choice of the regularization parameter is based on generalized cross-validation criterion. Two typical numerical examples are given to verify the efficiency and accuracy of the proposed method.
ISSN:1741-5977
1741-5985
DOI:10.1080/17415977.2017.1369537