The method of fundamental solution for the inverse source problem for the space-fractional diffusion equation
In this article, a meshless numerical method for solving the inverse source problem of the space-fractional diffusion equation is proposed. The numerical solution is approximated using the fundamental solution of the space-fractional diffusion equation as a basis function. Since the resulting matrix...
Saved in:
| Published in: | Inverse problems in science and engineering Vol. 26; no. 7; pp. 925 - 941 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Taylor & Francis
03.07.2018
|
| Subjects: | |
| ISSN: | 1741-5977, 1741-5985 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this article, a meshless numerical method for solving the inverse source problem of the space-fractional diffusion equation is proposed. The numerical solution is approximated using the fundamental solution of the space-fractional diffusion equation as a basis function. Since the resulting matrix equation is extremely ill-conditioned, a regularized solution is obtained by adopting the Tikhonov regularization scheme, in which the choice of the regularization parameter is based on generalized cross-validation criterion. Two typical numerical examples are given to verify the efficiency and accuracy of the proposed method. |
|---|---|
| ISSN: | 1741-5977 1741-5985 |
| DOI: | 10.1080/17415977.2017.1369537 |