The method of fundamental solution for the inverse source problem for the space-fractional diffusion equation

In this article, a meshless numerical method for solving the inverse source problem of the space-fractional diffusion equation is proposed. The numerical solution is approximated using the fundamental solution of the space-fractional diffusion equation as a basis function. Since the resulting matrix...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Inverse problems in science and engineering Ročník 26; číslo 7; s. 925 - 941
Hlavní autori: Wen, Jin, Cheng, Jun-Feng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Taylor & Francis 03.07.2018
Predmet:
ISSN:1741-5977, 1741-5985
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this article, a meshless numerical method for solving the inverse source problem of the space-fractional diffusion equation is proposed. The numerical solution is approximated using the fundamental solution of the space-fractional diffusion equation as a basis function. Since the resulting matrix equation is extremely ill-conditioned, a regularized solution is obtained by adopting the Tikhonov regularization scheme, in which the choice of the regularization parameter is based on generalized cross-validation criterion. Two typical numerical examples are given to verify the efficiency and accuracy of the proposed method.
ISSN:1741-5977
1741-5985
DOI:10.1080/17415977.2017.1369537