Shapiro-Wilk test for skew normal distributions based on data transformations
A probability property that connects the skew normal (SN) distribution with the normal distribution is used for proposing a goodness-of-fit test for the composite null hypothesis that a random sample follows an SN distribution with unknown parameters. The random sample is transformed to approximatel...
Uloženo v:
| Vydáno v: | Journal of statistical computation and simulation Ročník 89; číslo 17; s. 3258 - 3272 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
22.11.2019
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0094-9655, 1563-5163 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A probability property that connects the skew normal (SN) distribution with the normal distribution is used for proposing a goodness-of-fit test for the composite null hypothesis that a random sample follows an SN distribution with unknown parameters. The random sample is transformed to approximately normal random variables, and then the Shapiro-Wilk test is used for testing normality. The implementation of this test does not require neither parametric bootstrap nor the use of tables for different values of the slant parameter. An additional test for the same problem, based on a property that relates the gamma and SN distributions, is also introduced. The results of a power study conducted by the Monte Carlo simulation show some good properties of the proposed tests in comparison to existing tests for the same problem. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0094-9655 1563-5163 |
| DOI: | 10.1080/00949655.2019.1658763 |