Non-standard finite difference method applied to an initial boundary value problem describing hepatitis B virus infection
In this paper, two non-standard finite difference (NSFD) schemes are proposed for a mathematical model of hepatitis B virus (HBV) infection with spatial dependence. The dynamic properties of the obtained discretized systems are completely analyzed. Relying on the theory of M-matrix, we prove that th...
Uložené v:
| Vydané v: | Journal of difference equations and applications Ročník 26; číslo 1; s. 122 - 139 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Abingdon
Taylor & Francis
02.01.2020
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 1023-6198, 1563-5120 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, two non-standard finite difference (NSFD) schemes are proposed for a mathematical model of hepatitis B virus (HBV) infection with spatial dependence. The dynamic properties of the obtained discretized systems are completely analyzed. Relying on the theory of M-matrix, we prove that the proposed NSFD schemes is unconditionally positive. Furthermore, we establish that the NSFD method used preserves all constant steady states of the corresponding continuous initial boundary value problem (IBVP) model. We prove that the conditions for those equilibria to be asymptotically stable are consistent with the continuous IBVP model independently of the numerical grid size. The global asymptotical properties of the HBV-free equilibrium of the proposed NSFD schemes are derived via the construction of a suitable discrete Lyapunov function, and coincides with the continuous system. This confirms that the discretized models are dynamically consistent since they maintain essential properties of the corresponding continuous IBVP model. Finally, numerical simulations are performed from which it is demonstrated that the proposed NSFD method is advantageous over the standard finite difference (SFD) method. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1023-6198 1563-5120 |
| DOI: | 10.1080/10236198.2019.1709064 |