Robust and structure exploiting optimisation algorithms: an integral quadratic constraint approach

We consider the problem of analysing and designing gradient-based discrete-time optimisation algorithms for a class of unconstrained optimisation problems having strongly convex objective functions with Lipschitz continuous gradient. By formulating the problem as a robustness analysis problem and ma...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of control Ročník 94; číslo 11; s. 2956 - 2979
Hlavní autoři: Michalowsky, Simon, Scherer, Carsten, Ebenbauer, Christian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 02.11.2021
Taylor & Francis Ltd
Témata:
ISSN:0020-7179, 1366-5820
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the problem of analysing and designing gradient-based discrete-time optimisation algorithms for a class of unconstrained optimisation problems having strongly convex objective functions with Lipschitz continuous gradient. By formulating the problem as a robustness analysis problem and making use of a suitable adaptation of the theory of integral quadratic constraints, we establish a framework that allows to analyse convergence rates and robustness properties of existing algorithms and enables the design of novel robust optimisation algorithms with prespecified guarantees capable of exploiting additional structure in the objective function.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0020-7179
1366-5820
DOI:10.1080/00207179.2020.1745286