A branch-and-cut algorithm using polar cuts for solving nonconvex quadratic programming problems

In this paper, we propose a branch-and-cut algorithm for solving a nonconvex quadratically constrained quadratic programming (QCQP) problem with a nonempty bounded feasible domain. The problem is first transformed into a linear conic programming problem, and then approximated by semidefinite program...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization Ročník 67; číslo 2; s. 359 - 375
Hlavní autoři: Deng, Zhibin, Fang, Shu-Cherng, Lu, Cheng, Guo, Xiaoling
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Taylor & Francis 01.02.2018
Taylor & Francis LLC
Témata:
ISSN:0233-1934, 1029-4945
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we propose a branch-and-cut algorithm for solving a nonconvex quadratically constrained quadratic programming (QCQP) problem with a nonempty bounded feasible domain. The problem is first transformed into a linear conic programming problem, and then approximated by semidefinite programming problems over different intervals. In order to improve the lower bounds, polar cuts, generated from corresponding cut-generation problems, are embedded in a branch-and-cut algorithm to yield a globally - -optimal solution (with respect to feasibility and optimality, respectively) in a finite number of iterations. To enhance the computational speed, an adaptive branch-and-cut rule is adopted. Numerical experiments indicate that the number of explored nodes required for solving QCQP problems can be significantly reduced by employing the proposed polar cuts.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2017.1391253