A branch-and-cut algorithm using polar cuts for solving nonconvex quadratic programming problems
In this paper, we propose a branch-and-cut algorithm for solving a nonconvex quadratically constrained quadratic programming (QCQP) problem with a nonempty bounded feasible domain. The problem is first transformed into a linear conic programming problem, and then approximated by semidefinite program...
Uloženo v:
| Vydáno v: | Optimization Ročník 67; číslo 2; s. 359 - 375 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia
Taylor & Francis
01.02.2018
Taylor & Francis LLC |
| Témata: | |
| ISSN: | 0233-1934, 1029-4945 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we propose a branch-and-cut algorithm for solving a nonconvex quadratically constrained quadratic programming (QCQP) problem with a nonempty bounded feasible domain. The problem is first transformed into a linear conic programming problem, and then approximated by semidefinite programming problems over different intervals. In order to improve the lower bounds, polar cuts, generated from corresponding cut-generation problems, are embedded in a branch-and-cut algorithm to yield a globally
-
-optimal solution (with respect to feasibility and optimality, respectively) in a finite number of iterations. To enhance the computational speed, an adaptive branch-and-cut rule is adopted. Numerical experiments indicate that the number of explored nodes required for solving QCQP problems can be significantly reduced by employing the proposed polar cuts. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0233-1934 1029-4945 |
| DOI: | 10.1080/02331934.2017.1391253 |