Multiscale Diff-Changed Feature Fusion Network for Hyperspectral Image Change Detection
For hyperspectral image (HSI) change detection (CD), multiscale features are usually used to construct the detection models. However, the existing studies only consider the multiscale features containing changed and unchanged components, which is difficult to represent the subtle changes between bit...
Uloženo v:
| Vydáno v: | IEEE transactions on geoscience and remote sensing Ročník 61; s. 1 - 13 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | For hyperspectral image (HSI) change detection (CD), multiscale features are usually used to construct the detection models. However, the existing studies only consider the multiscale features containing changed and unchanged components, which is difficult to represent the subtle changes between bitemporal HSIs in each scale. To address this problem, we propose a multiscale diff-changed feature fusion network (MSDFFN) for HSI CD, which improves the ability of feature representation by learning the refined change components between bitemporal HSIs under different scales. In this network, a temporal feature encoder-decoder subnetwork, which combines a reduced inception (RI) module and a cross-layer attention module to highlight the significant features, is designed to extract the temporal features of HSIs. A bidirectional diff-changed feature representation (BDFR) module is proposed to learn the fine changed features of bitemporal HSIs at various scales to enhance the discriminative performance of the subtle change. A multiscale attention fusion (MSAF) module is developed to adaptively fuse the changed features of various scales. The proposed method can not only discover the subtle change in bitemporal HSIs but also improve the discriminating power for HSI CD. Experimental results on three HSI datasets show that MSDFFN outperforms a few state-of-the-art methods. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0196-2892 1558-0644 |
| DOI: | 10.1109/TGRS.2023.3241097 |