Automatic detection of photovoltaic module defects in infrared images with isolated and develop-model transfer deep learning

[Display omitted] •State-of-the-art framework is proposed for automatic defect detection in PV modules.•Infrared images dataset of normal operating and defective PV modules is collected.•Isolated and develop-model transfer deep learning frameworks are proposed.•Isolated & transfer learned method...

Full description

Saved in:
Bibliographic Details
Published in:Solar energy Vol. 198; pp. 175 - 186
Main Authors: Akram, M. Waqar, Li, Guiqiang, Jin, Yi, Chen, Xiao, Zhu, Changan, Ahmad, Ashfaq
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 01.03.2020
Pergamon Press Inc
Subjects:
ISSN:0038-092X, 1471-1257
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •State-of-the-art framework is proposed for automatic defect detection in PV modules.•Infrared images dataset of normal operating and defective PV modules is collected.•Isolated and develop-model transfer deep learning frameworks are proposed.•Isolated & transfer learned methods give 98.67% and 99.23% accuracy respectively.•These frameworks are qualitatively evaluated with experimental testing. With the rising use of photovoltaic and ongoing installation of large-scale photovoltaic systems worldwide, the automation of photovoltaic monitoring methods becomes important, as manual/visual inspection has limited applications. This research work deals with automatic detection of photovoltaic module defects in Infrared images with isolated deep learning and develop-model transfer deep learning techniques. An Infrared images dataset containing infrared images of normal operating and defective modules is collected and used to train the networks. The dataset is obtained from Infrared imaging performed on normal operating and defective photovoltaic modules with lab induced defects. An isolated learned model is trained from scratch using a light convolutional neural network design that achieved an average accuracy of 98.67%. For transfer learning, a base model is first developed (pre-trained) from electroluminescence images dataset of photovoltaic cells and then fine-tuned on infrared images dataset, that achieved an average accuracy of 99.23%. Both frameworks require low computation power and less time; and can be implemented with ordinary hardware. They also maintained real time prediction speed. The comparison shows that the develop-model transfer learning technique can help to improve the performance. In addition, we reviewed different kind of defects detectable from infrared imaging of photovoltaic modules, that can help in manual labelling for identifying different defect categories upon access to new huge data in future studies. Last of all, the presented frameworks are applied for experimental testing and qualitative evaluation.
AbstractList With the rising use of photovoltaic and ongoing installation of large-scale photovoltaic systems worldwide, the automation of photovoltaic monitoring methods becomes important, as manual/visual inspection has limited applications. This research work deals with automatic detection of photovoltaic module defects in Infrared images with isolated deep learning and develop-model transfer deep learning techniques. An Infrared images dataset containing infrared images of normal operating and defective modules is collected and used to train the networks. The dataset is obtained from Infrared imaging performed on normal operating and defective photovoltaic modules with lab induced defects. An isolated learned model is trained from scratch using a light convolutional neural network design that achieved an average accuracy of 98.67%. For transfer learning, a base model is first developed (pre-trained) from electroluminescence images dataset of photovoltaic cells and then fine-tuned on infrared images dataset, that achieved an average accuracy of 99.23%. Both frameworks require low computation power and less time; and can be implemented with ordinary hardware. They also maintained real time prediction speed. The comparison shows that the develop-model transfer learning technique can help to improve the performance. In addition, we reviewed different kind of defects detectable from infrared imaging of photovoltaic modules, that can help in manual labelling for identifying different defect categories upon access to new huge data in future studies. Last of all, the presented frameworks are applied for experimental testing and qualitative evaluation.
[Display omitted] •State-of-the-art framework is proposed for automatic defect detection in PV modules.•Infrared images dataset of normal operating and defective PV modules is collected.•Isolated and develop-model transfer deep learning frameworks are proposed.•Isolated & transfer learned methods give 98.67% and 99.23% accuracy respectively.•These frameworks are qualitatively evaluated with experimental testing. With the rising use of photovoltaic and ongoing installation of large-scale photovoltaic systems worldwide, the automation of photovoltaic monitoring methods becomes important, as manual/visual inspection has limited applications. This research work deals with automatic detection of photovoltaic module defects in Infrared images with isolated deep learning and develop-model transfer deep learning techniques. An Infrared images dataset containing infrared images of normal operating and defective modules is collected and used to train the networks. The dataset is obtained from Infrared imaging performed on normal operating and defective photovoltaic modules with lab induced defects. An isolated learned model is trained from scratch using a light convolutional neural network design that achieved an average accuracy of 98.67%. For transfer learning, a base model is first developed (pre-trained) from electroluminescence images dataset of photovoltaic cells and then fine-tuned on infrared images dataset, that achieved an average accuracy of 99.23%. Both frameworks require low computation power and less time; and can be implemented with ordinary hardware. They also maintained real time prediction speed. The comparison shows that the develop-model transfer learning technique can help to improve the performance. In addition, we reviewed different kind of defects detectable from infrared imaging of photovoltaic modules, that can help in manual labelling for identifying different defect categories upon access to new huge data in future studies. Last of all, the presented frameworks are applied for experimental testing and qualitative evaluation.
Author Li, Guiqiang
Akram, M. Waqar
Chen, Xiao
Zhu, Changan
Ahmad, Ashfaq
Jin, Yi
Author_xml – sequence: 1
  givenname: M. Waqar
  surname: Akram
  fullname: Akram, M. Waqar
  organization: Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
– sequence: 2
  givenname: Guiqiang
  surname: Li
  fullname: Li, Guiqiang
  email: guiqiang.li@hull.ac.uk
  organization: School of Engineering, University of Hull, Hull HU6 7RX, UK
– sequence: 3
  givenname: Yi
  surname: Jin
  fullname: Jin, Yi
  email: jinyi08@ustc.edu.cn
  organization: Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
– sequence: 4
  givenname: Xiao
  surname: Chen
  fullname: Chen, Xiao
  organization: State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, China
– sequence: 5
  givenname: Changan
  surname: Zhu
  fullname: Zhu, Changan
  organization: Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
– sequence: 6
  givenname: Ashfaq
  orcidid: 0000-0001-5559-043X
  surname: Ahmad
  fullname: Ahmad, Ashfaq
  organization: Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
BookMark eNqFkEFrXCEQx6Wk0M22H6Eg9Pxe1edbXXooISRtIJBLAr2Jq2Pi8lZf1d0QyIfvLJtTLwFBmPn_Rud3Ts5STkDIV856zvjq-7aveYIEpRdMsJ7xno3jB7LgUvGOi1GdkQVjg-7YWvz5RM5r3TLGFddqQV4v9i3vbIuOemjgWsyJ5kDnp9zyIU_NYmeX_X4CDAQMVBoTnlBsAU_jzj5Cpc-xPdGI37ANizZ5DB9gynOHLEy0FZtqgIJlmOkEtqSYHj-Tj8FOFb683UvycH11f_m7u737dXN5cdu5YVCt80GumN0MIDdKKiukB6EV8MFv3EbzddCjdHoQWjMdBvBcyFHIoLwE4MH5YUm-nebOJf_dQ21mm_cl4ZNGSMlWas2ExNR4SrmSay0QzFxwvfJiODNH0WZr3kSbo2jDuEHRyP34j3Ox2aNI3DpO79I_TzSggEPEbnURkgMfC9o2Psd3JvwDfVSioA
CitedBy_id crossref_primary_10_1007_s12596_024_01868_0
crossref_primary_10_1002_tee_23776
crossref_primary_10_1016_j_solener_2022_03_062
crossref_primary_10_1016_j_apenergy_2025_125370
crossref_primary_10_1016_j_energy_2025_136711
crossref_primary_10_1016_j_rineng_2024_102622
crossref_primary_10_1109_TIM_2024_3379412
crossref_primary_10_1016_j_infrared_2025_105878
crossref_primary_10_3390_en15062055
crossref_primary_10_3390_rs15061686
crossref_primary_10_3390_electronics13244859
crossref_primary_10_1155_2023_6850772
crossref_primary_10_1016_j_solener_2025_113489
crossref_primary_10_1109_JPHOTOV_2024_3492283
crossref_primary_10_1016_j_icheatmasstransfer_2024_107271
crossref_primary_10_1016_j_rser_2021_110889
crossref_primary_10_3390_bioengineering11111076
crossref_primary_10_1016_j_apenergy_2025_126108
crossref_primary_10_1016_j_compeleceng_2024_109872
crossref_primary_10_3390_s22010372
crossref_primary_10_1109_TIM_2022_3212990
crossref_primary_10_7769_gesec_v15i12_4570
crossref_primary_10_1109_ACCESS_2021_3071269
crossref_primary_10_1002_pip_3479
crossref_primary_10_1016_j_egyr_2023_03_094
crossref_primary_10_1002_tee_23647
crossref_primary_10_1016_j_renene_2024_121187
crossref_primary_10_3390_app13042470
crossref_primary_10_3390_s23136235
crossref_primary_10_1016_j_rser_2020_110512
crossref_primary_10_1016_j_solener_2024_112703
crossref_primary_10_1016_j_renene_2025_122926
crossref_primary_10_1016_j_solener_2023_112207
crossref_primary_10_1109_JSEN_2025_3561200
crossref_primary_10_3389_fmed_2025_1551315
crossref_primary_10_1371_journal_pone_0304819
crossref_primary_10_1016_j_rser_2024_114861
crossref_primary_10_3233_JCM_237108
crossref_primary_10_1002_admt_202401013
crossref_primary_10_1002_tee_23996
crossref_primary_10_1109_ACCESS_2021_3117004
crossref_primary_10_1016_j_seta_2025_104441
crossref_primary_10_1016_j_measurement_2023_112466
crossref_primary_10_1016_j_measurement_2024_114683
crossref_primary_10_3390_s24165348
crossref_primary_10_1016_j_cherd_2025_05_030
crossref_primary_10_3390_en16093749
crossref_primary_10_1016_j_eswa_2023_120959
crossref_primary_10_1016_j_engappai_2024_108174
crossref_primary_10_1016_j_eswa_2022_118646
crossref_primary_10_1007_s00521_023_08957_4
crossref_primary_10_1016_j_ijepes_2025_110863
crossref_primary_10_1016_j_engappai_2024_109027
crossref_primary_10_3390_en16104012
crossref_primary_10_3390_s21165668
crossref_primary_10_3390_electronics13132564
crossref_primary_10_1049_ell2_13056
crossref_primary_10_1088_1742_6596_2310_1_012006
crossref_primary_10_3390_su14084832
crossref_primary_10_3390_s25010206
crossref_primary_10_1016_j_renene_2025_124138
crossref_primary_10_1016_j_egyr_2022_03_173
crossref_primary_10_3390_en14196316
crossref_primary_10_3390_en15228667
crossref_primary_10_1016_j_rser_2024_114617
crossref_primary_10_1049_rpg2_12715
crossref_primary_10_1016_j_engappai_2024_107866
crossref_primary_10_1016_j_solener_2025_113672
crossref_primary_10_1016_j_solener_2025_113958
crossref_primary_10_1002_er_7201
crossref_primary_10_1016_j_solener_2025_113959
crossref_primary_10_3390_s23218780
crossref_primary_10_1080_00207543_2023_2232471
crossref_primary_10_1109_ACCESS_2024_3422616
crossref_primary_10_3390_su15119131
crossref_primary_10_3389_fnbot_2024_1396979
crossref_primary_10_1007_s00521_022_07622_6
crossref_primary_10_1016_j_jobe_2023_107285
crossref_primary_10_1016_j_enbuild_2021_111256
crossref_primary_10_1109_TIM_2024_3462989
crossref_primary_10_1016_j_energy_2024_131222
crossref_primary_10_26833_ijeg_1506265
crossref_primary_10_1016_j_asoc_2025_113592
crossref_primary_10_1016_j_segan_2022_100946
crossref_primary_10_1177_1748006X21995388
crossref_primary_10_1016_j_ref_2025_100682
crossref_primary_10_1080_10589759_2025_2537322
crossref_primary_10_5194_gi_11_195_2022
crossref_primary_10_1016_j_solener_2025_113846
crossref_primary_10_12677_MOS_2023_123199
crossref_primary_10_1016_j_eswa_2023_120382
crossref_primary_10_1108_ECAM_07_2021_0631
crossref_primary_10_1155_2024_5586605
crossref_primary_10_1016_j_egyr_2022_10_427
crossref_primary_10_1016_j_seta_2022_102071
crossref_primary_10_1007_s10921_024_01089_2
crossref_primary_10_1016_j_solener_2020_04_052
crossref_primary_10_3390_bioengineering10121430
crossref_primary_10_1595_205651325X17271929252761
crossref_primary_10_1080_10589759_2024_2357240
crossref_primary_10_3390_su15097087
crossref_primary_10_1109_JPHOTOV_2024_3437736
crossref_primary_10_1016_j_solener_2022_05_017
crossref_primary_10_3390_bioengineering11090913
crossref_primary_10_3390_s21134361
crossref_primary_10_3390_forecast5010012
crossref_primary_10_1016_j_energy_2022_125902
crossref_primary_10_1002_tee_70067
crossref_primary_10_1016_j_apenergy_2022_120579
crossref_primary_10_3389_fnbot_2024_1431643
crossref_primary_10_1002_ima_23001
crossref_primary_10_1002_solr_202500289
crossref_primary_10_1016_j_ijleo_2020_165476
crossref_primary_10_1016_j_infrared_2021_103754
crossref_primary_10_1016_j_infrared_2024_105253
crossref_primary_10_1016_j_engappai_2022_105459
crossref_primary_10_1016_j_apenergy_2024_124187
crossref_primary_10_1007_s00521_023_09041_7
crossref_primary_10_1007_s10409_024_24076_x
crossref_primary_10_1109_TIM_2021_3126381
crossref_primary_10_1109_ACCESS_2022_3178588
crossref_primary_10_1109_JPHOTOV_2025_3563887
crossref_primary_10_1016_j_sciaf_2025_e02684
crossref_primary_10_1016_j_solener_2020_10_086
crossref_primary_10_3390_s21134292
crossref_primary_10_1109_TIM_2023_3335509
crossref_primary_10_3390_technologies12100175
crossref_primary_10_1016_j_rineng_2025_106491
crossref_primary_10_1109_ACCESS_2021_3111904
crossref_primary_10_1080_0951192X_2021_1901319
crossref_primary_10_1002_ente_202000100
crossref_primary_10_1038_s41598_022_22763_3
crossref_primary_10_1016_j_apenergy_2022_118822
crossref_primary_10_1038_s41598_025_14478_y
crossref_primary_10_3390_su14053092
crossref_primary_10_1016_j_solener_2023_112186
crossref_primary_10_1002_pip_3859
crossref_primary_10_1016_j_rser_2025_116057
crossref_primary_10_1016_j_seta_2021_101785
crossref_primary_10_1016_j_solmat_2025_113777
crossref_primary_10_1016_j_infrared_2025_106115
crossref_primary_10_1016_j_seta_2021_101545
crossref_primary_10_1007_s10845_022_02001_3
crossref_primary_10_1109_ACCESS_2024_3509955
crossref_primary_10_1088_1361_6501_ad8e77
crossref_primary_10_3390_a13090207
crossref_primary_10_1002_advs_202302631
crossref_primary_10_1016_j_jii_2024_100760
crossref_primary_10_3390_en16114513
crossref_primary_10_1109_ACCESS_2021_3110947
Cites_doi 10.1049/iet-rpg.2017.0001
10.1109/TEC.2018.2873358
10.1016/j.energy.2018.12.002
10.1016/j.rser.2016.04.079
10.1155/2010/805325
10.1016/j.solmat.2009.09.016
10.1109/EBCCSP.2015.7300708
10.1109/JPHOTOV.2018.2848722
10.1109/WACV.2016.7477658
10.1016/j.solener.2019.02.067
10.1109/POWERCON.2018.8602188
10.1016/j.energy.2019.116319
10.1109/JPHOTOV.2018.2859780
10.1002/ese3.140
10.1016/j.solener.2019.08.061
10.1109/JPHOTOV.2019.2895808
10.1109/JPHOTOV.2018.2846665
10.1109/WACV.2018.00043
10.1109/EEEIC.2012.6221500
10.1002/pip.2717
10.1080/14786451.2013.826223
10.1002/pip.2975
10.1109/ICRERA.2015.7418626
10.3390/en12050769
10.1109/TKDE.2009.191
10.1016/j.solener.2017.03.065
10.1109/TIM.2018.2809078
ContentType Journal Article
Copyright 2020 International Solar Energy Society
Copyright Pergamon Press Inc. Mar 1, 2020
Copyright_xml – notice: 2020 International Solar Energy Society
– notice: Copyright Pergamon Press Inc. Mar 1, 2020
DBID AAYXX
CITATION
7SP
7ST
8FD
C1K
FR3
KR7
L7M
SOI
DOI 10.1016/j.solener.2020.01.055
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1471-1257
EndPage 186
ExternalDocumentID 10_1016_j_solener_2020_01_055
S0038092X20300621
GroupedDBID --K
--M
-ET
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACGOD
ACIWK
ACRLP
ADBBV
ADEZE
ADHUB
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BKOMP
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSR
SSZ
T5K
TAE
TN5
WH7
XPP
YNT
ZMT
~02
~G-
~KM
~S-
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
NEJ
R2-
SAC
SEW
UKR
VOH
WUQ
XOL
ZY4
~A~
~HD
7SP
7ST
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
C1K
FR3
KR7
L7M
SOI
ID FETCH-LOGICAL-c337t-df460ab3e4b747a24de287e13dbcb819f854c8328808f3ed124524f7d4ee1fcd3
ISICitedReferencesCount 181
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524527300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0038-092X
IngestDate Sat Jul 26 02:33:25 EDT 2025
Sat Nov 29 07:28:26 EST 2025
Tue Nov 18 22:04:07 EST 2025
Fri Feb 23 02:48:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Isolated deep learning
Automatic defect detection
Develop-model transfer deep learning
Photovoltaic (PV) modules
Infrared images
Thermography
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-df460ab3e4b747a24de287e13dbcb819f854c8328808f3ed124524f7d4ee1fcd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5559-043X
PQID 2440679024
PQPubID 9393
PageCount 12
ParticipantIDs proquest_journals_2440679024
crossref_primary_10_1016_j_solener_2020_01_055
crossref_citationtrail_10_1016_j_solener_2020_01_055
elsevier_sciencedirect_doi_10_1016_j_solener_2020_01_055
PublicationCentury 2000
PublicationDate 2020-03-01
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Solar energy
PublicationYear 2020
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Tsanakas, Chrysostomou, Botsaris, Gasteratos (b0230) 2015; 34
Hoyer, U., Buerhop, C., Jahn, U., 2008. Electroluminescence and infrared imaging for quality improvements of PV modules. In: 23rd European Photovoltaic Solar Energy Conference and Exhibition (EU-PVSEC). pp. 2913–2916.
Li, X., Yang, Q., Wang, J., Chen, Z., Yan, W., 2018. Intelligent fault pattern recognition of aerial photovoltaic module images based on deep learning technique. In: 9th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2018). pp. 22–27.
Bedrich, Luo, Pravettoni, Chen, Chen, Wang, Verlinden, Hacke, Feng, Chai, Wang, Aberle, Khoo (b0025) 2018; 8
Li, Akram, Jin, Chen, Zhu, Ahmad, Arshad, Zhao (b0125) 2019; 168
Tománek, Škarvada, Macků, Grmela (b0225) 2010; 2010
Brownlee (b0030) 2019
Akram, Li, Jin, Chen, Zhu, Zhao, Aleem, Ahmad (b0015) 2019; 190
Simonyan, Zisserman (b0195) 2015
Yosinski, J., Clune, J., Bengio, Y., Lipson, H., 2014. How transferable are features in deep neural networks ?. In: Proceedings of the 27th International Conference on Neural Information Processing Systems. MIT Press Cambridge, MA, USA, pp. 3320–3328.
Jahn, U., Herz, M., Köntges, M., Parlevliet, D., Paggi, M., Tsanakas, I., Stein, J.S., Berger, K.A., Ranta, S., French, R.H., Richter, M., Tanahashi, T., 2018. Performance and Reliability of Photovoltaic Systems – subtask 3.3: Review on Infrared and Electroluminescence Imaging for PV Field Applications. External final report by international energy agency (IEA) for photovoltaic power systems programme (PVPS).
Buerhop, C., Deitsch, S., Maier, A., Gallwitz, F., Berger, S., Doll, B., Hauch, J., Camus, C., Brabec, C.J., Bayern, V., Erlangen, D.-, Nürnberg, H., Simon, G., Nürnberg, E.C., Straße, F., Mustererkennung, L., Erlangen-nürnberg, F.A.U., Erlangen-nürnberg, F.A.U., Erlangen, D., 2018a. A benchmark for visual identification of defective solar cells in electroluminescence imagery. In: 35th European PV Solar Energy Conference and Exhibition. pp. 1287–1289.
Li, Yang, Chen, Luo, Yan (b0130) 2017; 11
Géron (b0095) 2017
Pan, Fellow (b0155) 2010; 22
Demant, M., Virtue, P., Kovvali, A.S., Yu, S.X., Rein., S., 2018. Deep learning approach to inline quality rating and mapping of multi-crystalline Si-wafers. In: 35th European Photovoltaic Solar Energy Conference and Exhibition (35th EU PVSEC). pp. 814–818.
Aghaei, M., Gandelli, A., Grimaccia, F., Leva, S., Zich, R.E., 2015. IR real-time analyses for PV system monitoring by digital image processing techniques. In: IEEE International Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP). IEEE, pp. 1–6.
Deitsch, S., Christlein, V., Berger, S., Buerhop-Lutz, C., Maier, A., Gallwitz, F., & Riess, C., 2019. Automatic classification of defective photovoltaic module cells in electroluminescence images. arXiv:1807.02894v3.
Chollet (b0060) 2018
.
Stromer, Vetter, Oezkan, Probst, Maier (b0205) 2019; 9
Buerhop, Wirsching, Bemm, Pickel, Hohmann, Nieß, Vodermayer, Huber, Glück, Mergheim, Camus, Hauch, Brabec (b0045) 2018; 26
Jordan, Silverman, Wohlgemuth, Kurtz, VanSant (b0085) 2017
Vergura, S., Marino, F., Carpentieri, M., 2015. Processing infrared image of PV modules for defects classification. In: 4th IEEE International Conference on Renewable Energy Research and Applications (ICRERA). IEEE, pp. 1337–1341.
Li, Yang, Lou, Yan (b0135) 2019; 34
Jäger-Waldau (b0110) 2019; 12
Tang, Y., 2015. Deep learning using linear support vector machines. arXiv:1306.0239v4.
Köntges, M., Sarah, K., Packard, C., Jahn, U., Berger, K.A., Kato, K., Friesen, T., Liu, H., Iseghe, M. Van, 2014. performance and reliability of photovoltcaic systems – subtask 3.2: review of failures of photovoltaic modules. External final report by international energy agency (IEA) for photovoltaic power systems programme (PVPS).
Deitsch, S., Buerhop-lutz, C., Maier, A., Gallwitz, F., Riess, C., 2018. Segmentation of photovoltaic module cells in electroluminescence images. arXiv:1806.06530v2.
Hepp, Machui, Egelhaaf, Brabec, Vetter (b0100) 2016; 4
Pozza, Sample (b0165) 2016; 24
Ding, S., Yang, Q., Li, X., Yan, W., Ruan, W., 2018. Transfer learning based photovoltaic module defect diagnosis using aerial images. In: 2018 International Conference on Power System Technology (POWERCON). IEEE, pp. 4245–4250.
Dotenco, S., Dalsass, M., Winkler, L., Würzner, T., Brabec, C., Maier, A., Gallwitz, F., Bayern, Z.A.E., 2016. Automatic detection and analysis of photovoltaic modules in aerial infrared imagery. In: IEEE Winter Conference on Applications of Computer Vision (WACV). Lake Placid, New York, USA.
Schuss, Remes, Leppänen, Saarela, Fabritius, Eichberger, Rahkonen (b0180) 2018; 67
Ram, M., Bogdanov, D., Aghahosseini, A., Gulagi, A., Oyewo, A.S., Child, M., Caldera, U., Sadovskaia, K., Farfan, J., Barbosa, L.S.N.S., Fasihi, M., Khalili, S., Dalheimer, B., Gruber, G., Traber, T., De Caluwe, F., Fell, H.-J., B.C., 2019. Global energy system based on 100% renewable energy - power, heat, transport and desalination sectors. Study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta, Berlin.
Su, Chen, Zhu, Liu, Liu (b0210) 2019; PP
WEO, 2018. 2018 World Energy Outlook, International Energy Agency. https://doi.org/ISBN PDF 978-92-64-30677-6 (ISBN Print 978-92-64-06452-2).
Chen, Pang, Hu, Liu (b0055) 2018
Sarkar, Bali, Ghosh (b0175) 2018
Buerhop, Fecher, Pickel, Häring, Adamski, Brabec (b0040) 2018
Akram, Li, Jin, Chen, Zhu, Zhao (b0010) 2019
Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C., 2018. A survey on deep transfer learning. arXiv:1808.01974v1 1–10.
Mehta, S., Azad, A.P., Chemmengath, S.A., Raykar, V., 2018. Deep solar eye : power loss prediction and weakly supervised soiling localization via fully convolutional networks for solar panels. In: 2018 IEEE Winter Conf. Appl. Comput. Vis. 333–342. https://doi.org/10.1109/WACV.2018.00043.
Tsanakas, Ha, Buerhop (b0235) 2016; 62
Chattopadhyay, Dubey, Bhaduri, Zachariah, Singh, Solanki, Kottantharayil, Shiradkar, Arora, Narasimhan, Vasi (b0050) 2018; 8
Simon, Meyer (b0190) 2010; 94
Tsanakas, J.A., Vannier, G., Plissonnier, A., Ha, L.D., Barruel, F., 2015. Fault diagnosis and classification of large-scale photovoltaic plants through aerial orthophoto thermal mapping. In: 31st European Photovoltaic Solar Energy Conference and Exhibition. pp. 1783–1788.
Demant, M., Welschehold, T., Nold, S., 2014. Micro-cracks in silicon wafers and solar cells: detection and rating of mechanical strength and electrical quality. In: 29th European PV Solar Energy Conference and Exhibition.
Nasr, Asghari, Rashid-nadimi (b0150) 2017; 148
Bedrich, Bokalič, Bliss, Topič, Betts, Gottschalg (b0020) 2018; 8
Petrosyan, A., Hovhannisyan, A., 2017. Infrared image processing for solar cell defect detection. In: IEEE 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). IEEE.
Spagnolo, G.S., Vecchio, P. Del, Makary, G., Papalillo, D., Martocchia, A., 2012. A review of IR thermography applied to PV systems. In: 11th IEEE International Conference on Environment and Electrical Engineering (EEEIC). IEEE, pp. 879–884.
10.1016/j.solener.2020.01.055_b0035
Jordan (10.1016/j.solener.2020.01.055_b0085) 2017
10.1016/j.solener.2020.01.055_b0115
Akram (10.1016/j.solener.2020.01.055_b0015) 2019; 190
Hepp (10.1016/j.solener.2020.01.055_b0100) 2016; 4
Stromer (10.1016/j.solener.2020.01.055_b0205) 2019; 9
Li (10.1016/j.solener.2020.01.055_b0125) 2019; 168
Pan (10.1016/j.solener.2020.01.055_b0155) 2010; 22
Tsanakas (10.1016/j.solener.2020.01.055_b0235) 2016; 62
10.1016/j.solener.2020.01.055_b0070
Buerhop (10.1016/j.solener.2020.01.055_b0040) 2018
10.1016/j.solener.2020.01.055_b0075
Li (10.1016/j.solener.2020.01.055_b0130) 2017; 11
Tománek (10.1016/j.solener.2020.01.055_b0225) 2010; 2010
10.1016/j.solener.2020.01.055_b0145
Nasr (10.1016/j.solener.2020.01.055_b0150) 2017; 148
10.1016/j.solener.2020.01.055_b0220
10.1016/j.solener.2020.01.055_b0105
Bedrich (10.1016/j.solener.2020.01.055_b0020) 2018; 8
Pozza (10.1016/j.solener.2020.01.055_b0165) 2016; 24
Géron (10.1016/j.solener.2020.01.055_b0095) 2017
Li (10.1016/j.solener.2020.01.055_b0135) 2019; 34
Tsanakas (10.1016/j.solener.2020.01.055_b0230) 2015; 34
Akram (10.1016/j.solener.2020.01.055_b0010) 2019
10.1016/j.solener.2020.01.055_b0065
Su (10.1016/j.solener.2020.01.055_b0210) 2019; PP
10.1016/j.solener.2020.01.055_b0185
Bedrich (10.1016/j.solener.2020.01.055_b0025) 2018; 8
10.1016/j.solener.2020.01.055_b0140
10.1016/j.solener.2020.01.055_b0255
10.1016/j.solener.2020.01.055_b0215
Simonyan (10.1016/j.solener.2020.01.055_b0195) 2015
Jäger-Waldau (10.1016/j.solener.2020.01.055_b0110) 2019; 12
Chollet (10.1016/j.solener.2020.01.055_b0060) 2018
Sarkar (10.1016/j.solener.2020.01.055_b0175) 2018
Schuss (10.1016/j.solener.2020.01.055_b0180) 2018; 67
10.1016/j.solener.2020.01.055_b0090
10.1016/j.solener.2020.01.055_b0170
Chen (10.1016/j.solener.2020.01.055_b0055) 2018
10.1016/j.solener.2020.01.055_b0250
Chattopadhyay (10.1016/j.solener.2020.01.055_b0050) 2018; 8
10.1016/j.solener.2020.01.055_b0245
10.1016/j.solener.2020.01.055_b0200
10.1016/j.solener.2020.01.055_b0005
Buerhop (10.1016/j.solener.2020.01.055_b0045) 2018; 26
Brownlee (10.1016/j.solener.2020.01.055_b0030) 2019
10.1016/j.solener.2020.01.055_b0160
Simon (10.1016/j.solener.2020.01.055_b0190) 2010; 94
10.1016/j.solener.2020.01.055_b0080
10.1016/j.solener.2020.01.055_b0120
10.1016/j.solener.2020.01.055_b0240
References_xml – reference: Dotenco, S., Dalsass, M., Winkler, L., Würzner, T., Brabec, C., Maier, A., Gallwitz, F., Bayern, Z.A.E., 2016. Automatic detection and analysis of photovoltaic modules in aerial infrared imagery. In: IEEE Winter Conference on Applications of Computer Vision (WACV). Lake Placid, New York, USA.
– volume: 8
  start-page: 1297
  year: 2018
  end-page: 1304
  ident: b0020
  article-title: Electroluminescence imaging of PV devices: advanced vignetting calibration
  publication-title: IEEE J. Photovoltaics
– start-page: 1
  year: 2018
  end-page: 9
  ident: b0040
  article-title: Verifying defective PV – modules by IR-imaging and controlling with module optimizers
  publication-title: Prog. Photovoltaics Res. Appl.
– reference: Yosinski, J., Clune, J., Bengio, Y., Lipson, H., 2014. How transferable are features in deep neural networks ?. In: Proceedings of the 27th International Conference on Neural Information Processing Systems. MIT Press Cambridge, MA, USA, pp. 3320–3328.
– reference: Petrosyan, A., Hovhannisyan, A., 2017. Infrared image processing for solar cell defect detection. In: IEEE 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). IEEE.
– volume: 11
  start-page: 1234
  year: 2017
  end-page: 1244
  ident: b0130
  article-title: Visible defects detection based on UAV-based inspection in large-scale photovoltaic systems
  publication-title: IET Renew. Power Gener.
– volume: 67
  start-page: 1178
  year: 2018
  end-page: 1186
  ident: b0180
  article-title: Detecting defects in photovoltaic modules with the help of experimental verification and synchronized thermography
  publication-title: IEEE Trans. Instrum. Meas.
– volume: PP
  start-page: 1
  year: 2019
  end-page: 14
  ident: b0210
  article-title: Classification of manufacturing defects in multicrystalline solar cells with novel feature descriptor
  publication-title: IEEE Trans. Instrum. Meas.
– year: 2019
  ident: b0030
  article-title: Deep Learning for Computer Vision: Image Classification, Object Detection and Face Recognition in Python
– reference: WEO, 2018. 2018 World Energy Outlook, International Energy Agency. https://doi.org/ISBN PDF 978-92-64-30677-6 (ISBN Print 978-92-64-06452-2).
– reference: Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C., 2018. A survey on deep transfer learning. arXiv:1808.01974v1 1–10.
– volume: 24
  start-page: 368
  year: 2016
  end-page: 378
  ident: b0165
  article-title: Crystalline silicon PV module degradation after 20years of field exposure studied by electrical tests, electroluminescence, and LBIC
  publication-title: Prog. Photovoltaics Res. Appl.
– reference: Ram, M., Bogdanov, D., Aghahosseini, A., Gulagi, A., Oyewo, A.S., Child, M., Caldera, U., Sadovskaia, K., Farfan, J., Barbosa, L.S.N.S., Fasihi, M., Khalili, S., Dalheimer, B., Gruber, G., Traber, T., De Caluwe, F., Fell, H.-J., B.C., 2019. Global energy system based on 100% renewable energy - power, heat, transport and desalination sectors. Study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta, Berlin.
– volume: 34
  start-page: 520
  year: 2019
  end-page: 529
  ident: b0135
  article-title: Deep learning based module defect analysis for large-scale photovoltaic farms
  publication-title: IEEE Trans. Energy Convers.
– volume: 8
  start-page: 1800
  year: 2018
  end-page: 1808
  ident: b0050
  article-title: Correlating infrared thermography with electrical degradation of PV modules inspected in All-India survey of photovoltaic module reliability 2016
  publication-title: IEEE J. Photovoltaics
– reference: Demant, M., Welschehold, T., Nold, S., 2014. Micro-cracks in silicon wafers and solar cells: detection and rating of mechanical strength and electrical quality. In: 29th European PV Solar Energy Conference and Exhibition.
– year: 2018
  ident: b0175
  article-title: Hands-On Transfer Learning with Python: Implement Advanced Deep Learning and Neural Network Models using TensorFlow and Keras
– volume: 62
  start-page: 695
  year: 2016
  end-page: 709
  ident: b0235
  article-title: Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: a review of research and future challenges
  publication-title: Renew. Sustain. Energy Rev.
– reference: Demant, M., Virtue, P., Kovvali, A.S., Yu, S.X., Rein., S., 2018. Deep learning approach to inline quality rating and mapping of multi-crystalline Si-wafers. In: 35th European Photovoltaic Solar Energy Conference and Exhibition (35th EU PVSEC). pp. 814–818.
– volume: 148
  start-page: 49
  year: 2017
  end-page: 56
  ident: b0150
  article-title: A numerical model for soldering process in silicon solar cells
  publication-title: Sol. Energy
– volume: 9
  start-page: 752
  year: 2019
  end-page: 758
  ident: b0205
  article-title: Enhanced Crack Segmentation (eCS): a reference algorithm for segmenting cracks in multicrystalline silicon solar cells
  publication-title: IEEE J. Photovoltaics
– reference: Ding, S., Yang, Q., Li, X., Yan, W., Ruan, W., 2018. Transfer learning based photovoltaic module defect diagnosis using aerial images. In: 2018 International Conference on Power System Technology (POWERCON). IEEE, pp. 4245–4250.
– volume: 26
  start-page: 261
  year: 2018
  end-page: 272
  ident: b0045
  article-title: Evolution of cell cracks in PV-modules under field and laboratory conditions
  publication-title: Prog. Photovoltaics Res. Appl.
– year: 2019
  ident: b0010
  article-title: CNN based automatic detection of photovoltaic cell defects in electroluminescence images
  publication-title: Energy
– year: 2018
  ident: b0055
  article-title: Solar cell surface defect inspection based on multispectral convolutional neural network
  publication-title: J. Intell. Manuf.
– reference: Deitsch, S., Christlein, V., Berger, S., Buerhop-Lutz, C., Maier, A., Gallwitz, F., & Riess, C., 2019. Automatic classification of defective photovoltaic module cells in electroluminescence images. arXiv:1807.02894v3.
– volume: 168
  start-page: 931
  year: 2019
  end-page: 945
  ident: b0125
  article-title: Thermo-mechanical behavior assessment of smart wire connected and busbarPV modules during production, transportation, and subsequent field loading stages
  publication-title: Energy
– reference: Köntges, M., Sarah, K., Packard, C., Jahn, U., Berger, K.A., Kato, K., Friesen, T., Liu, H., Iseghe, M. Van, 2014. performance and reliability of photovoltcaic systems – subtask 3.2: review of failures of photovoltaic modules. External final report by international energy agency (IEA) for photovoltaic power systems programme (PVPS).
– volume: 2010
  start-page: 1
  year: 2010
  end-page: 5
  ident: b0225
  article-title: Detection and localization of defects in monocrystalline silicon solar cell
  publication-title: Adv. Opt. Technol.
– year: 2018
  ident: b0060
  article-title: Deep Learning with Python
– year: 2017
  ident: b0095
  article-title: Hands-On Machine Learning with Scikit-Learn and TensorFlow
– volume: 12
  year: 2019
  ident: b0110
  article-title: Snapshot of photovoltaics—February 2019
  publication-title: Energies
– volume: 190
  start-page: 549
  year: 2019
  end-page: 560
  ident: b0015
  article-title: Improved outdoor thermography and processing of infrared images for defect detection in PV modules
  publication-title: Sol. Energy
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: b0155
  article-title: A Survey on Transfer Learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 4
  start-page: 363
  year: 2016
  end-page: 371
  ident: b0100
  article-title: Automatized analysis of IR- ­ images of photovoltaic modules and its use for quality control of solar cells
  publication-title: Energy Sci. Eng.
– reference: Jahn, U., Herz, M., Köntges, M., Parlevliet, D., Paggi, M., Tsanakas, I., Stein, J.S., Berger, K.A., Ranta, S., French, R.H., Richter, M., Tanahashi, T., 2018. Performance and Reliability of Photovoltaic Systems – subtask 3.3: Review on Infrared and Electroluminescence Imaging for PV Field Applications. External final report by international energy agency (IEA) for photovoltaic power systems programme (PVPS).
– volume: 94
  start-page: 106
  year: 2010
  end-page: 113
  ident: b0190
  article-title: Detection and analysis of hot-spot formation in solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
– reference: Tang, Y., 2015. Deep learning using linear support vector machines. arXiv:1306.0239v4.
– reference: Aghaei, M., Gandelli, A., Grimaccia, F., Leva, S., Zich, R.E., 2015. IR real-time analyses for PV system monitoring by digital image processing techniques. In: IEEE International Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP). IEEE, pp. 1–6.
– volume: 8
  start-page: 1281
  year: 2018
  end-page: 1288
  ident: b0025
  article-title: Quantitative electroluminescence imaging analysis for performance estimation of PID-influenced PV modules
  publication-title: IEEE J. Photovoltaics
– reference: Vergura, S., Marino, F., Carpentieri, M., 2015. Processing infrared image of PV modules for defects classification. In: 4th IEEE International Conference on Renewable Energy Research and Applications (ICRERA). IEEE, pp. 1337–1341.
– reference: Deitsch, S., Buerhop-lutz, C., Maier, A., Gallwitz, F., Riess, C., 2018. Segmentation of photovoltaic module cells in electroluminescence images. arXiv:1806.06530v2.
– reference: Buerhop, C., Deitsch, S., Maier, A., Gallwitz, F., Berger, S., Doll, B., Hauch, J., Camus, C., Brabec, C.J., Bayern, V., Erlangen, D.-, Nürnberg, H., Simon, G., Nürnberg, E.C., Straße, F., Mustererkennung, L., Erlangen-nürnberg, F.A.U., Erlangen-nürnberg, F.A.U., Erlangen, D., 2018a. A benchmark for visual identification of defective solar cells in electroluminescence imagery. In: 35th European PV Solar Energy Conference and Exhibition. pp. 1287–1289.
– reference: Li, X., Yang, Q., Wang, J., Chen, Z., Yan, W., 2018. Intelligent fault pattern recognition of aerial photovoltaic module images based on deep learning technique. In: 9th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2018). pp. 22–27.
– reference: Mehta, S., Azad, A.P., Chemmengath, S.A., Raykar, V., 2018. Deep solar eye : power loss prediction and weakly supervised soiling localization via fully convolutional networks for solar panels. In: 2018 IEEE Winter Conf. Appl. Comput. Vis. 333–342. https://doi.org/10.1109/WACV.2018.00043.
– reference: .
– year: 2015
  ident: b0195
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: International Conference on Learning Representations
– reference: Spagnolo, G.S., Vecchio, P. Del, Makary, G., Papalillo, D., Martocchia, A., 2012. A review of IR thermography applied to PV systems. In: 11th IEEE International Conference on Environment and Electrical Engineering (EEEIC). IEEE, pp. 879–884.
– year: 2017
  ident: b0085
  article-title: Photovoltaic failure and degradation modes
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 34
  start-page: 351
  year: 2015
  end-page: 372
  ident: b0230
  article-title: Fault diagnosis of photovoltaic modules through image processing and Canny edge detection on field thermographic measurements
  publication-title: Int. J. Sustain. Energy
– reference: Hoyer, U., Buerhop, C., Jahn, U., 2008. Electroluminescence and infrared imaging for quality improvements of PV modules. In: 23rd European Photovoltaic Solar Energy Conference and Exhibition (EU-PVSEC). pp. 2913–2916.
– reference: Tsanakas, J.A., Vannier, G., Plissonnier, A., Ha, L.D., Barruel, F., 2015. Fault diagnosis and classification of large-scale photovoltaic plants through aerial orthophoto thermal mapping. In: 31st European Photovoltaic Solar Energy Conference and Exhibition. pp. 1783–1788.
– volume: 11
  start-page: 1234
  year: 2017
  ident: 10.1016/j.solener.2020.01.055_b0130
  article-title: Visible defects detection based on UAV-based inspection in large-scale photovoltaic systems
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/iet-rpg.2017.0001
– ident: 10.1016/j.solener.2020.01.055_b0075
– year: 2018
  ident: 10.1016/j.solener.2020.01.055_b0060
– year: 2018
  ident: 10.1016/j.solener.2020.01.055_b0055
  article-title: Solar cell surface defect inspection based on multispectral convolutional neural network
  publication-title: J. Intell. Manuf.
– volume: 34
  start-page: 520
  year: 2019
  ident: 10.1016/j.solener.2020.01.055_b0135
  article-title: Deep learning based module defect analysis for large-scale photovoltaic farms
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2018.2873358
– volume: 168
  start-page: 931
  year: 2019
  ident: 10.1016/j.solener.2020.01.055_b0125
  article-title: Thermo-mechanical behavior assessment of smart wire connected and busbarPV modules during production, transportation, and subsequent field loading stages
  publication-title: Energy
  doi: 10.1016/j.energy.2018.12.002
– volume: 62
  start-page: 695
  year: 2016
  ident: 10.1016/j.solener.2020.01.055_b0235
  article-title: Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: a review of research and future challenges
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.04.079
– ident: 10.1016/j.solener.2020.01.055_b0255
– volume: PP
  start-page: 1
  year: 2019
  ident: 10.1016/j.solener.2020.01.055_b0210
  article-title: Classification of manufacturing defects in multicrystalline solar cells with novel feature descriptor
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 2010
  start-page: 1
  year: 2010
  ident: 10.1016/j.solener.2020.01.055_b0225
  article-title: Detection and localization of defects in monocrystalline silicon solar cell
  publication-title: Adv. Opt. Technol.
  doi: 10.1155/2010/805325
– year: 2018
  ident: 10.1016/j.solener.2020.01.055_b0175
– volume: 94
  start-page: 106
  year: 2010
  ident: 10.1016/j.solener.2020.01.055_b0190
  article-title: Detection and analysis of hot-spot formation in solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2009.09.016
– ident: 10.1016/j.solener.2020.01.055_b0215
– ident: 10.1016/j.solener.2020.01.055_b0240
– ident: 10.1016/j.solener.2020.01.055_b0250
– ident: 10.1016/j.solener.2020.01.055_b0005
  doi: 10.1109/EBCCSP.2015.7300708
– volume: 8
  start-page: 1297
  year: 2018
  ident: 10.1016/j.solener.2020.01.055_b0020
  article-title: Electroluminescence imaging of PV devices: advanced vignetting calibration
  publication-title: IEEE J. Photovoltaics
  doi: 10.1109/JPHOTOV.2018.2848722
– ident: 10.1016/j.solener.2020.01.055_b0070
– year: 2017
  ident: 10.1016/j.solener.2020.01.055_b0095
– ident: 10.1016/j.solener.2020.01.055_b0120
– ident: 10.1016/j.solener.2020.01.055_b0090
  doi: 10.1109/WACV.2016.7477658
– ident: 10.1016/j.solener.2020.01.055_b0185
  doi: 10.1016/j.solener.2019.02.067
– year: 2015
  ident: 10.1016/j.solener.2020.01.055_b0195
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: 10.1016/j.solener.2020.01.055_b0220
– ident: 10.1016/j.solener.2020.01.055_b0080
  doi: 10.1109/POWERCON.2018.8602188
– ident: 10.1016/j.solener.2020.01.055_b0115
– ident: 10.1016/j.solener.2020.01.055_b0140
– year: 2017
  ident: 10.1016/j.solener.2020.01.055_b0085
  article-title: Photovoltaic failure and degradation modes
  publication-title: Prog. Photovoltaics Res. Appl.
– year: 2019
  ident: 10.1016/j.solener.2020.01.055_b0010
  article-title: CNN based automatic detection of photovoltaic cell defects in electroluminescence images
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116319
– ident: 10.1016/j.solener.2020.01.055_b0035
– ident: 10.1016/j.solener.2020.01.055_b0105
– volume: 8
  start-page: 1800
  year: 2018
  ident: 10.1016/j.solener.2020.01.055_b0050
  article-title: Correlating infrared thermography with electrical degradation of PV modules inspected in All-India survey of photovoltaic module reliability 2016
  publication-title: IEEE J. Photovoltaics
  doi: 10.1109/JPHOTOV.2018.2859780
– volume: 4
  start-page: 363
  year: 2016
  ident: 10.1016/j.solener.2020.01.055_b0100
  article-title: Automatized analysis of IR- ­ images of photovoltaic modules and its use for quality control of solar cells
  publication-title: Energy Sci. Eng.
  doi: 10.1002/ese3.140
– volume: 190
  start-page: 549
  year: 2019
  ident: 10.1016/j.solener.2020.01.055_b0015
  article-title: Improved outdoor thermography and processing of infrared images for defect detection in PV modules
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.08.061
– volume: 9
  start-page: 752
  year: 2019
  ident: 10.1016/j.solener.2020.01.055_b0205
  article-title: Enhanced Crack Segmentation (eCS): a reference algorithm for segmenting cracks in multicrystalline silicon solar cells
  publication-title: IEEE J. Photovoltaics
  doi: 10.1109/JPHOTOV.2019.2895808
– volume: 8
  start-page: 1281
  year: 2018
  ident: 10.1016/j.solener.2020.01.055_b0025
  article-title: Quantitative electroluminescence imaging analysis for performance estimation of PID-influenced PV modules
  publication-title: IEEE J. Photovoltaics
  doi: 10.1109/JPHOTOV.2018.2846665
– ident: 10.1016/j.solener.2020.01.055_b0145
  doi: 10.1109/WACV.2018.00043
– ident: 10.1016/j.solener.2020.01.055_b0200
  doi: 10.1109/EEEIC.2012.6221500
– volume: 24
  start-page: 368
  year: 2016
  ident: 10.1016/j.solener.2020.01.055_b0165
  article-title: Crystalline silicon PV module degradation after 20years of field exposure studied by electrical tests, electroluminescence, and LBIC
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.2717
– ident: 10.1016/j.solener.2020.01.055_b0160
– volume: 34
  start-page: 351
  year: 2015
  ident: 10.1016/j.solener.2020.01.055_b0230
  article-title: Fault diagnosis of photovoltaic modules through image processing and Canny edge detection on field thermographic measurements
  publication-title: Int. J. Sustain. Energy
  doi: 10.1080/14786451.2013.826223
– volume: 26
  start-page: 261
  year: 2018
  ident: 10.1016/j.solener.2020.01.055_b0045
  article-title: Evolution of cell cracks in PV-modules under field and laboratory conditions
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.2975
– start-page: 1
  year: 2018
  ident: 10.1016/j.solener.2020.01.055_b0040
  article-title: Verifying defective PV – modules by IR-imaging and controlling with module optimizers
  publication-title: Prog. Photovoltaics Res. Appl.
– ident: 10.1016/j.solener.2020.01.055_b0065
  doi: 10.1016/j.solener.2019.02.067
– ident: 10.1016/j.solener.2020.01.055_b0245
  doi: 10.1109/ICRERA.2015.7418626
– volume: 12
  year: 2019
  ident: 10.1016/j.solener.2020.01.055_b0110
  article-title: Snapshot of photovoltaics—February 2019
  publication-title: Energies
  doi: 10.3390/en12050769
– volume: 22
  start-page: 1345
  year: 2010
  ident: 10.1016/j.solener.2020.01.055_b0155
  article-title: A Survey on Transfer Learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– year: 2019
  ident: 10.1016/j.solener.2020.01.055_b0030
– volume: 148
  start-page: 49
  year: 2017
  ident: 10.1016/j.solener.2020.01.055_b0150
  article-title: A numerical model for soldering process in silicon solar cells
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.03.065
– volume: 67
  start-page: 1178
  year: 2018
  ident: 10.1016/j.solener.2020.01.055_b0180
  article-title: Detecting defects in photovoltaic modules with the help of experimental verification and synchronized thermography
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2809078
– ident: 10.1016/j.solener.2020.01.055_b0170
SSID ssj0017187
Score 2.649999
Snippet [Display omitted] •State-of-the-art framework is proposed for automatic defect detection in PV modules.•Infrared images dataset of normal operating and...
With the rising use of photovoltaic and ongoing installation of large-scale photovoltaic systems worldwide, the automation of photovoltaic monitoring methods...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 175
SubjectTerms Accuracy
Artificial neural networks
Automatic defect detection
Automation
Datasets
Deep learning
Defects
Develop-model transfer deep learning
Electroluminescence
Infrared imagery
Infrared images
Infrared imaging
Inspection
Isolated deep learning
Labeling
Machine learning
Modules
Monitoring methods
Neural networks
Performance enhancement
Photovoltaic (PV) modules
Photovoltaic cells
Photovoltaics
Solar energy
Thermography
Transfer learning
Title Automatic detection of photovoltaic module defects in infrared images with isolated and develop-model transfer deep learning
URI https://dx.doi.org/10.1016/j.solener.2020.01.055
https://www.proquest.com/docview/2440679024
Volume 198
WOSCitedRecordID wos000524527300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1471-1257
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017187
  issn: 0038-092X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5FKQc4IJ6iUNAeuFUOttex18cIlZegQmoR4bSy91FcWjtNnKoH_gl_ltmnUx4qIHGxIkd2VpnPM9-Ov5lB6KmidU5qISIF4STK8jiLylzkkUqBytG8gLDBzbCJYn-fzufl-9Hom6-FOT8p2pZeXJSL_2pqOAfG1qWzf2HucFM4AZ_B6HAEs8Pxjww_W_ed7cMqZC-5Z4SLz13fgS_qK_jmtBNrUzFlxRyNljuqpdGiN6eVbvtg8rMNrLTSlFRn1115VWRm5-jREkB4zXhxufCzJ442qe6B3jTvSlNbGGD1ZWkB-G6y-7E6q4Iy-K0RFbxcN2cA16Mg67ENDj41gwjBesl5U3Wb-QrYnAbBlk2i-UKaQbVkHDPRKgwzWR3CkvXFEDcj4F_FJWdtZ1Y7d5vYqSsucie2qfZPQcHmJ44nK610kLoJbBqbXq3T6RAFgzbxQK9FLyUF_xfnuknBVlpMSzpGW7PXe_M34SUVhHXbktWtfSgQe_bLH_sd9fmBBBhmc3gL3XRbEjyzULqNRrK9g25sNKq8i74GUOEAKtwpvAkqbEGFHahw02IPKmxBhTWosAcVBlDhS6DCHlRYgwp7UN1DH17sHT5_Fbm5HREnpOgjoeCZr2oisxo2q1WaCQn7cpkQUfMaGKii04xDJIHQQRWRItFv_zNViEzKRHFB7qNx27XyAcKwoS1FmYIjkQqiS0olSUuZxrKIOU-I2kaZ_0sZd03t9WyVE-bVi8fMWYJpS7A4YWCJbTQJly1sV5erLqDeXsxRU0s5GYDsqkt3vH2ZcxMrBqRaZ3CBID_89zs_QteHB2wHjfvlWj5G1_h536yWTxxavwNduMRu
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+detection+of+photovoltaic+module+defects+in+infrared+images+with+isolated+and+develop-model+transfer+deep+learning&rft.jtitle=Solar+energy&rft.au=Akram%2C+M.+Waqar&rft.au=Li%2C+Guiqiang&rft.au=Jin%2C+Yi&rft.au=Chen%2C+Xiao&rft.date=2020-03-01&rft.pub=Elsevier+Ltd&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=198&rft.spage=175&rft.epage=186&rft_id=info:doi/10.1016%2Fj.solener.2020.01.055&rft.externalDocID=S0038092X20300621
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon