Adaptive water distribution networks with dynamically reconfigurable topology

This paper presents a novel concept of adaptive water distribution networks with dynamically reconfigurable topology for optimal pressure control, leakage management and improved system resilience. The implementation of District Meter Areas (DMAs) has greatly assisted water utilities in reducing lea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydroinformatics Jg. 16; H. 6; S. 1280 - 1301
Hauptverfasser: Wright, Robert, Stoianov, Ivan, Parpas, Panos, Henderson, Kevin, King, John
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London IWA Publishing 01.11.2014
Schlagworte:
ISSN:1464-7141, 1465-1734
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a novel concept of adaptive water distribution networks with dynamically reconfigurable topology for optimal pressure control, leakage management and improved system resilience. The implementation of District Meter Areas (DMAs) has greatly assisted water utilities in reducing leakage. DMAs segregate water networks into small areas, the flow in and out of each area is monitored and thresholds are derived from the minimum night flow to trigger the leak localization. A major drawback of the DMA approach is the reduced redundancy in network connectivity which has a severe impact on network resilience, incident management and water quality deterioration. The presented approach for adaptively reconfigurable networks integrates the benefits of DMAs for managing leakage with the advantages of large-scale looped networks for increased redundancy in connectivity, reliability and resilience. Self-powered multi-function network controllers are designed and integrated with novel telemetry tools for high-speed time-synchronized monitoring of the dynamic hydraulic conditions. A computationally efficient and robust optimization method based on sequential convex programming is developed and applied for the dynamic topology reconfiguration and pressure control of water distribution networks. An investigation is carried out using an operational network to evaluate the implementation and benefits of the proposed method.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1464-7141
1465-1734
DOI:10.2166/hydro.2014.086