Algebraic dynamics algorithm: Numerical comparison with Runge–Kutta algorithm and symplectic geometric algorithm
Based on the exact analytical solution of ordinary differential equations, a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm. A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric al...
Uloženo v:
| Vydáno v: | Science China. Physics, mechanics & astronomy Ročník 50; číslo 1; s. 53 - 69 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Beijing
Springer Nature B.V
01.02.2007
Center of Theoretical Physics,Sichuan University,Chengdu 610064,China |
| Témata: | |
| ISSN: | 1672-1799, 1674-7348, 1862-2844, 1869-1927 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Based on the exact analytical solution of ordinary differential equations, a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm. A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models. The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision, and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 1672-1799 1674-7348 1862-2844 1869-1927 |
| DOI: | 10.1007/s11433-007-2016-4 |