Algebraic dynamics algorithm: Numerical comparison with Runge–Kutta algorithm and symplectic geometric algorithm

Based on the exact analytical solution of ordinary differential equations, a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm. A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric al...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Science China. Physics, mechanics & astronomy Ročník 50; číslo 1; s. 53 - 69
Hlavní autoři: Wang, ShunJin, Zhang, Hua
Médium: Journal Article
Jazyk:angličtina
Vydáno: Beijing Springer Nature B.V 01.02.2007
Center of Theoretical Physics,Sichuan University,Chengdu 610064,China
Témata:
ISSN:1672-1799, 1674-7348, 1862-2844, 1869-1927
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Based on the exact analytical solution of ordinary differential equations, a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm. A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models. The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision, and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1672-1799
1674-7348
1862-2844
1869-1927
DOI:10.1007/s11433-007-2016-4