Adaptive Integration Algorithm of Sports Event Network Marketing Data Based on Big Data

To address the issues of low-data integration accuracy and efficiency, as well as a lack of data integration impact, an adaptive data integration algorithm for sports event network marketing data based on big data is presented. The fundamental theory of tensor is researched by examining the notion a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Security and communication networks Jg. 2022; S. 1 - 9
Hauptverfasser: Wu, Jiatong, Zhang, Jun, Qiao, Jing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Hindawi 27.05.2022
John Wiley & Sons, Inc
Schlagworte:
ISSN:1939-0114, 1939-0122
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To address the issues of low-data integration accuracy and efficiency, as well as a lack of data integration impact, an adaptive data integration algorithm for sports event network marketing data based on big data is presented. The fundamental theory of tensor is researched by examining the notion and features of big data and by using the associated technologies of the big data framework. Collect network-marketing data from a variety of sporting events and feed it to a big data platform. Combined with MapReduce parallelization mode, tensor represents the online marketing data of sports events according to the structured, semistructured, and unstructured characteristics of different big data. Integrate each tensor model based on semitensor product, build a unified data adaptive integration tensor model, and realize the adaptive integration of sports event network marketing data. The experimental results show that the proposed algorithm has a good effect on the adaptive integration of sports event network marketing data and can effectively improve the accuracy and efficiency of data adaptive integration.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1939-0114
1939-0122
DOI:10.1155/2022/7660071