Evaluation Algorithm of Teaching Work Quality in Colleges and Universities Based on Deep Denoising Autoencoder Network

One of the most significant components of the teaching department’s evaluation of teaching quality is evaluating teachers’ performance. With the acceleration of educational informatization, modern information processing technology can be used effectively to evaluate teachers’ teaching quality in tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mobile information systems Jg. 2021; S. 1 - 7
1. Verfasser: Liu, Yu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Hindawi 2021
John Wiley & Sons, Inc
Schlagworte:
ISSN:1574-017X, 1875-905X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract One of the most significant components of the teaching department’s evaluation of teaching quality is evaluating teachers’ performance. With the acceleration of educational informatization, modern information processing technology can be used effectively to evaluate teachers’ teaching quality in traditional teaching. In this context, combined with some computational intelligence algorithms, it is critical to developing a targeted teaching quality evaluation system. This paper studies teacher teaching evaluation’s characteristics and existing problems and analyzes the fundamental theories and methods of teacher teaching evaluation in colleges and universities. A novel combination of deep denoising autoencoder and support vector machine was proposed for evaluating teacher’s teaching quality. Moreover, support vector regression is used to predict the model’s output layer to achieve supervised assessment prediction. To capture the data’s key properties, the model comprises numerous hidden layers and conducts various feature transformations during unsupervised training to minimize the mean square error between the reconstructed output data and the original input data. As a result, the proposed model achieved the highest recognition accuracy of 85.23% and convergence compared to other models. Thus, the method can be employed to evaluate and forecast the quality of university teaching activity successfully.
AbstractList One of the most significant components of the teaching department’s evaluation of teaching quality is evaluating teachers’ performance. With the acceleration of educational informatization, modern information processing technology can be used effectively to evaluate teachers’ teaching quality in traditional teaching. In this context, combined with some computational intelligence algorithms, it is critical to developing a targeted teaching quality evaluation system. This paper studies teacher teaching evaluation’s characteristics and existing problems and analyzes the fundamental theories and methods of teacher teaching evaluation in colleges and universities. A novel combination of deep denoising autoencoder and support vector machine was proposed for evaluating teacher’s teaching quality. Moreover, support vector regression is used to predict the model’s output layer to achieve supervised assessment prediction. To capture the data’s key properties, the model comprises numerous hidden layers and conducts various feature transformations during unsupervised training to minimize the mean square error between the reconstructed output data and the original input data. As a result, the proposed model achieved the highest recognition accuracy of 85.23% and convergence compared to other models. Thus, the method can be employed to evaluate and forecast the quality of university teaching activity successfully.
Author Liu, Yu
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0000-0001-9137-2130
  surname: Liu
  fullname: Liu, Yu
  organization: Publicity Department (News Center)Xian Peihua UniversityXianChina
BookMark eNp9kFtLwzAUx4MoeH3zAwR81LokbZr2cc55gaEIG_pW0uZ0ZtZkJulk397M-SToyzmHw_8Cv0O0a6wBhE4puaSU8wEjjA4KmtOy4DvogBaCJyXhL7vx5iJLCBUv--jQ-wUhOUm5OECr8Up2vQzaGjzs5tbp8PqObYunIJtXbeb42bo3_NTLToc11gaPbNfBHDyWRuGZ0StwXgcdH1fSg8Ix6BpgGYex2m8Shn2wYBqrwOEHCJ8x8BjttbLzcPKzj9DsZjwd3SWTx9v70XCSNGkqQiJByYxC2yoBhDaM1appFCvLAkhWZ4rUpWozwWRaE6pA8AIKnoEgbVbnqszTI3S2zV06-9GDD9XC9s7EyopxXqZpSQsWVRdbVeOs9w7aaun0u3TripJqQ7bakK1-yEY5-yVvdPhGGJzU3V-m860pQlXyU_9f8QVhiow2
CitedBy_id crossref_primary_10_1155_2022_9239812
Cites_doi 10.2478/cait-2014-0037
10.1016/j.caeai.2021.100009
10.1155/2021/9962057
10.1016/j.eswa.2012.07.059
10.1177/0022487118755699
10.1109/JBHI.2021.3069629.2021
10.52810/tc.2021.100024
10.3991/ijet.v15i01.12533
10.3390/s21041129
10.1080/10508406.2019.1573730
10.52810/tiot.2021.100035
10.4300/jgme-d-17-00128.1
10.1186/s41239-017-0041-6
10.1016/j.knosys.2017.11.010
10.1007/s12528-018-9197-x
10.1007/s00521-021-05933-8.2021
10.1166/jctn.2016.5939
10.1609/aaai.v34i07.6991
10.1016/j.learninstruc.2017.08.001
10.1109/compcomm.2016.7924899
ContentType Journal Article
Copyright Copyright © 2021 Yu Liu.
Copyright © 2021 Yu Liu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2021 Yu Liu.
– notice: Copyright © 2021 Yu Liu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1155/2021/8161985
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Technology Research Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1875-905X
Editor Khan, Fazlullah
Editor_xml – sequence: 1
  givenname: Fazlullah
  surname: Khan
  fullname: Khan, Fazlullah
EndPage 7
ExternalDocumentID 10_1155_2021_8161985
GroupedDBID -CS
-CY
.4S
.DC
0R~
4.4
5VS
AAFWJ
AAJEY
ABHFT
ABJNI
ACGFO
ACGFS
ADBBV
AEGXH
AENEX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
BCNDV
EBS
EDO
GROUPED_DOAJ
HZ~
I-F
IAO
IHR
IOS
KQ8
KZ1
LMP
MIO
MV1
NGNOM
O9-
OK1
P2P
RHU
RHW
RHX
TUS
24P
AAMMB
AAYXX
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
ALUQN
CITATION
H13
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c337t-aeda41effd7e01c22bdccd2998e04b4d0b9df472a3b01de758e854e70f4b6d963
IEDL.DBID RHX
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000684843700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1574-017X
IngestDate Fri Jul 25 09:31:34 EDT 2025
Sat Nov 29 02:30:54 EST 2025
Tue Nov 18 22:32:49 EST 2025
Sun Jun 02 18:51:53 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-aeda41effd7e01c22bdccd2998e04b4d0b9df472a3b01de758e854e70f4b6d963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9137-2130
OpenAccessLink https://dx.doi.org/10.1155/2021/8161985
PQID 2559339182
PQPubID 2048814
PageCount 7
ParticipantIDs proquest_journals_2559339182
crossref_primary_10_1155_2021_8161985
crossref_citationtrail_10_1155_2021_8161985
hindawi_primary_10_1155_2021_8161985
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Mobile information systems
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References 23
24
25
10
Y. Zeng (11) 2020; 15
13
14
C. Dede (17)
15
16
Z. Wang (21)
19
G. Dongjun (12) 2021; 16
X. Ning (22) 2021
1
2
Y. Zhang (18) 2020; 31
3
4
5
6
7
8
9
20
References_xml – ident: 15
  doi: 10.2478/cait-2014-0037
– ident: 8
  doi: 10.1016/j.caeai.2021.100009
– ident: 20
  doi: 10.1155/2021/9962057
– volume: 31
  year: 2020
  ident: 18
  article-title: CNN: adaptive gabor convolutional neural networks with receptive fields for vein biometric recognition
  publication-title: Concurrency and Computation: Practice and Experience
– ident: 10
  doi: 10.1016/j.eswa.2012.07.059
– ident: 3
  doi: 10.1177/0022487118755699
– ident: 16
  doi: 10.1109/JBHI.2021.3069629.2021
– ident: 2
  doi: 10.52810/tc.2021.100024
– volume: 15
  issue: 1
  year: 2020
  ident: 11
  article-title: Evaluation of physical education teaching quality in colleges based on the hybrid technology of data mining and hidden Markov model
  publication-title: International Journal of Emerging Technologies in Learning
  doi: 10.3991/ijet.v15i01.12533
– ident: 24
  doi: 10.3390/s21041129
– start-page: 452
  ident: 21
  article-title: The evaluation model of teaching quality of modern and contemporary literature in Chinese higher education based on support vector regression algorithm (SVRA)
– ident: 4
  doi: 10.1080/10508406.2019.1573730
– ident: 25
  doi: 10.52810/tiot.2021.100035
– ident: 6
  doi: 10.4300/jgme-d-17-00128.1
– ident: 5
  doi: 10.1186/s41239-017-0041-6
– ident: 19
  doi: 10.1016/j.knosys.2017.11.010
– ident: 7
  doi: 10.1007/s12528-018-9197-x
– ident: 13
  doi: 10.1007/s00521-021-05933-8.2021
– ident: 14
  doi: 10.1166/jctn.2016.5939
– ident: 23
  doi: 10.1609/aaai.v34i07.6991
– ident: 1
  doi: 10.1016/j.learninstruc.2017.08.001
– start-page: 43
  ident: 17
  article-title: Theoretical perspectives influencing the use of information technology in teaching and learning
– volume: 16
  issue: 3
  year: 2021
  ident: 12
  article-title: A teaching quality evaluation model for preschool teachers based on deep learning
  publication-title: International Journal of Emerging Technologies
– ident: 9
  doi: 10.1109/compcomm.2016.7924899
– year: 2021
  ident: 22
  article-title: A Review of research on co‐training. concurrency and computation: practice and experience
SSID ssj0060357
ssib050733852
Score 2.2171628
Snippet One of the most significant components of the teaching department’s evaluation of teaching quality is evaluating teachers’ performance. With the acceleration...
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial intelligence
Colleges & universities
Data processing
Noise reduction
Performance evaluation
Quality assessment
Quality of education
Sentiment analysis
Students
Support vector machines
Teacher evaluations
Teachers
Teaching
Teaching methods
Title Evaluation Algorithm of Teaching Work Quality in Colleges and Universities Based on Deep Denoising Autoencoder Network
URI https://dx.doi.org/10.1155/2021/8161985
https://www.proquest.com/docview/2559339182
Volume 2021
WOSCitedRecordID wos000684843700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1875-905X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050733852
  issn: 1574-017X
  databaseCode: M~E
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1875-905X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060357
  issn: 1574-017X
  databaseCode: 24P
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9uKPjitzg_Rh7mkxSbNlnbx6kbexpDFPZWmuTqBrMd-xL_ey9tOtAh-lIoHFe4S3L3u15-R0gLIumZAeYOwgntcKZcJ_EgcgIGUrUjCIXmxbCJYDAIR6NoaEmSFtu_8DHaGXjO7kPMTKJQ1EgtFGbxPvdH1bIRZu5gcQW4PIDbrl8QfDIRmAaLYFT1u__Q9S0S7Y0NBP6YbB3JRZzpHZEDmyDSTunRY7ID2Qk5rIYvULsXT8m6u-Hppp3pW44gf_xO85S-2P5IaurgtOTI-KSTjNoawYImmaabhgxEyvQBQ5mmqOgJYIaPLJ-YEgLtrJa5IbrU-OFB2S9-Rl573ZfHvmOHKDjK94Olk4BOOIM01QG4THme1EppDEIhuFxy7cpIpzzwEl-6TAPCB_QPh8BNuWxr3J7npJ7lGVwQKjF1UaEUAJhFMS9JJGYPMtWMC8VkO22Qu8qgsbIM42bQxTQukIYQsTF_bM3fILcb6VnJrPGLXMv65g-x68pxsd2Gi9jgJd-PEENd_k_LFdk3r2WN5ZrUl_MV3JBdtV5OFvMmqXl82CwW3xejEdCb
linkProvider Hindawi Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+Algorithm+of+Teaching+Work+Quality+in+Colleges+and+Universities+Based+on+Deep+Denoising+Autoencoder+Network&rft.jtitle=Mobile+information+systems&rft.au=Liu%2C+Yu&rft.date=2021&rft.issn=1574-017X&rft.eissn=1875-905X&rft.volume=2021&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1155%2F2021%2F8161985&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2021_8161985
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-017X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-017X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-017X&client=summon