Outer Approximation Method for Constrained Composite Fixed Point Problems Involving Lipschitz Pseudo Contractive Operators

We propose a method for solving constrained fixed point problems involving compositions of Lipschitz pseudo contractive and firmly nonexpansive operators in Hilbert spaces. Each iteration of the method uses separate evaluations of these operators and an outer approximation given by the projection on...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical functional analysis and optimization Ročník 32; číslo 11; s. 1099 - 1115
Hlavní autor: Briceño-Arias, Luis M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia, PA Taylor & Francis Group 01.11.2011
Taylor & Francis
Témata:
ISSN:0163-0563, 1532-2467
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose a method for solving constrained fixed point problems involving compositions of Lipschitz pseudo contractive and firmly nonexpansive operators in Hilbert spaces. Each iteration of the method uses separate evaluations of these operators and an outer approximation given by the projection onto a closed half-space containing the constraint set. Its convergence is established and applications to monotone inclusion splitting and constrained equilibrium problems are demonstrated.
ISSN:0163-0563
1532-2467
DOI:10.1080/01630563.2011.594199