Outer Approximation Method for Constrained Composite Fixed Point Problems Involving Lipschitz Pseudo Contractive Operators
We propose a method for solving constrained fixed point problems involving compositions of Lipschitz pseudo contractive and firmly nonexpansive operators in Hilbert spaces. Each iteration of the method uses separate evaluations of these operators and an outer approximation given by the projection on...
Uloženo v:
| Vydáno v: | Numerical functional analysis and optimization Ročník 32; číslo 11; s. 1099 - 1115 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia, PA
Taylor & Francis Group
01.11.2011
Taylor & Francis |
| Témata: | |
| ISSN: | 0163-0563, 1532-2467 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We propose a method for solving constrained fixed point problems involving compositions of Lipschitz pseudo contractive and firmly nonexpansive operators in Hilbert spaces. Each iteration of the method uses separate evaluations of these operators and an outer approximation given by the projection onto a closed half-space containing the constraint set. Its convergence is established and applications to monotone inclusion splitting and constrained equilibrium problems are demonstrated. |
|---|---|
| ISSN: | 0163-0563 1532-2467 |
| DOI: | 10.1080/01630563.2011.594199 |