AFRESh: an adaptive framework for compression of reads and assembled sequences with random access functionality

The past decade has seen the introduction of new technologies that lowered the cost of genomic sequencing increasingly. We can even observe that the cost of sequencing is dropping significantly faster than the cost of storage and transmission. The latter motivates a need for continuous improvements...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics (Oxford, England) Vol. 33; no. 10; pp. 1464 - 1472
Main Authors: Paridaens, Tom, Van Wallendael, Glenn, De Neve, Wesley, Lambert, Peter
Format: Journal Article
Language:English
Published: England 15.05.2017
Subjects:
ISSN:1367-4803, 1367-4811
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The past decade has seen the introduction of new technologies that lowered the cost of genomic sequencing increasingly. We can even observe that the cost of sequencing is dropping significantly faster than the cost of storage and transmission. The latter motivates a need for continuous improvements in the area of genomic data compression, not only at the level of effectiveness (compression rate), but also at the level of functionality (e.g. random access), configurability (effectiveness versus complexity, coding tool set …) and versatility (support for both sequenced reads and assembled sequences). In that regard, we can point out that current approaches mostly do not support random access, requiring full files to be transmitted, and that current approaches are restricted to either read or sequence compression. We propose AFRESh, an adaptive framework for no-reference compression of genomic data with random access functionality, targeting the effective representation of the raw genomic symbol streams of both reads and assembled sequences. AFRESh makes use of a configurable set of prediction and encoding tools, extended by a Context-Adaptive Binary Arithmetic Coding scheme (CABAC), to compress raw genetic codes. To the best of our knowledge, our paper is the first to describe an effective implementation CABAC outside of its' original application. By applying CABAC, the compression effectiveness improves by up to 19% for assembled sequences and up to 62% for reads. By applying AFRESh to the genomic symbols of the MPEG genomic compression test set for reads, a compression gain is achieved of up to 51% compared to SCALCE, 42% compared to LFQC and 44% compared to ORCOM. When comparing to generic compression approaches, a compression gain is achieved of up to 41% compared to GNU Gzip and 22% compared to 7-Zip at the Ultra setting. Additionaly, when compressing assembled sequences of the Human Genome, a compression gain is achieved up to 34% compared to GNU Gzip and 16% compared to 7-Zip at the Ultra setting. A Windows executable version can be downloaded at https://github.com/tparidae/AFresh . tom.paridaens@ugent.be.
AbstractList MOTIVATIONThe past decade has seen the introduction of new technologies that lowered the cost of genomic sequencing increasingly. We can even observe that the cost of sequencing is dropping significantly faster than the cost of storage and transmission. The latter motivates a need for continuous improvements in the area of genomic data compression, not only at the level of effectiveness (compression rate), but also at the level of functionality (e.g. random access), configurability (effectiveness versus complexity, coding tool set …) and versatility (support for both sequenced reads and assembled sequences). In that regard, we can point out that current approaches mostly do not support random access, requiring full files to be transmitted, and that current approaches are restricted to either read or sequence compression.RESULTSWe propose AFRESh, an adaptive framework for no-reference compression of genomic data with random access functionality, targeting the effective representation of the raw genomic symbol streams of both reads and assembled sequences. AFRESh makes use of a configurable set of prediction and encoding tools, extended by a Context-Adaptive Binary Arithmetic Coding scheme (CABAC), to compress raw genetic codes. To the best of our knowledge, our paper is the first to describe an effective implementation CABAC outside of its' original application. By applying CABAC, the compression effectiveness improves by up to 19% for assembled sequences and up to 62% for reads. By applying AFRESh to the genomic symbols of the MPEG genomic compression test set for reads, a compression gain is achieved of up to 51% compared to SCALCE, 42% compared to LFQC and 44% compared to ORCOM. When comparing to generic compression approaches, a compression gain is achieved of up to 41% compared to GNU Gzip and 22% compared to 7-Zip at the Ultra setting. Additionaly, when compressing assembled sequences of the Human Genome, a compression gain is achieved up to 34% compared to GNU Gzip and 16% compared to 7-Zip at the Ultra setting.AVAILABILITY AND IMPLEMENTATIONA Windows executable version can be downloaded at https://github.com/tparidae/AFresh .CONTACTtom.paridaens@ugent.be.
The past decade has seen the introduction of new technologies that lowered the cost of genomic sequencing increasingly. We can even observe that the cost of sequencing is dropping significantly faster than the cost of storage and transmission. The latter motivates a need for continuous improvements in the area of genomic data compression, not only at the level of effectiveness (compression rate), but also at the level of functionality (e.g. random access), configurability (effectiveness versus complexity, coding tool set …) and versatility (support for both sequenced reads and assembled sequences). In that regard, we can point out that current approaches mostly do not support random access, requiring full files to be transmitted, and that current approaches are restricted to either read or sequence compression. We propose AFRESh, an adaptive framework for no-reference compression of genomic data with random access functionality, targeting the effective representation of the raw genomic symbol streams of both reads and assembled sequences. AFRESh makes use of a configurable set of prediction and encoding tools, extended by a Context-Adaptive Binary Arithmetic Coding scheme (CABAC), to compress raw genetic codes. To the best of our knowledge, our paper is the first to describe an effective implementation CABAC outside of its' original application. By applying CABAC, the compression effectiveness improves by up to 19% for assembled sequences and up to 62% for reads. By applying AFRESh to the genomic symbols of the MPEG genomic compression test set for reads, a compression gain is achieved of up to 51% compared to SCALCE, 42% compared to LFQC and 44% compared to ORCOM. When comparing to generic compression approaches, a compression gain is achieved of up to 41% compared to GNU Gzip and 22% compared to 7-Zip at the Ultra setting. Additionaly, when compressing assembled sequences of the Human Genome, a compression gain is achieved up to 34% compared to GNU Gzip and 16% compared to 7-Zip at the Ultra setting. A Windows executable version can be downloaded at https://github.com/tparidae/AFresh . tom.paridaens@ugent.be.
Author Paridaens, Tom
De Neve, Wesley
Van Wallendael, Glenn
Lambert, Peter
Author_xml – sequence: 1
  givenname: Tom
  surname: Paridaens
  fullname: Paridaens, Tom
– sequence: 2
  givenname: Glenn
  surname: Van Wallendael
  fullname: Van Wallendael, Glenn
– sequence: 3
  givenname: Wesley
  surname: De Neve
  fullname: De Neve, Wesley
– sequence: 4
  givenname: Peter
  surname: Lambert
  fullname: Lambert, Peter
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28057687$$D View this record in MEDLINE/PubMed
BookMark eNpVkU1PwzAMhiM0xD7gJ4By5FKWLEubcpumDZAmIfFxrtLU0QJtM-KWsX9Pp41JnGzZj-1XfoekV_saCLnm7I6zVIxz511tfah04wyO8-aHMX5GBlzESTRVnPdOORN9MkT8YIxJJuML0p8oJpNYJQPiZ8uXxev6nuqa6kJvGvcN1AZdwdaHT9odoMZXmwCIztfUWxpAF9jhBdWIUOUlFBThq4XaANKta9Y0dF1fUW26ClLb1qbphnXpmt0lObe6RLg6xhF5Xy7e5o_R6vnhaT5bRUaIpImEZVKynDMArVKRmDifpDBNlU50Kq21e_lTkxulCmUlxMamEMe2KLiZQKLEiNwe9m6C77Rhk1UODZSlrsG3mHElY6nSROzRmyPa5hUU2Sa4Sodd9vekDpAHwASPGMCeEM6yvRnZfzOygxniFyQShMo
Cites_doi 10.1093/bioinformatics/btu390
10.1093/bioinformatics/bts593
10.1093/bioinformatics/btu844
10.1109/TCSVT.2003.815173
10.1093/bioinformatics/btu698
10.2174/1574893609666140516010143
10.1038/nmeth.3133
10.1147/rd.282.0135
10.1093/nar/gks754
10.1093/bioinformatics/btv384
10.1093/bioinformatics/btu208
10.1007/978-3-662-44276-0
10.1371/journal.pbio.1002195
10.1093/bioinformatics/btv399
10.1109/TCSVT.2012.2221526
ContentType Journal Article
Copyright The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Copyright_xml – notice: The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/bioinformatics/btx001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
EndPage 1472
ExternalDocumentID 28057687
10_1093_bioinformatics_btx001
Genre Journal Article
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
NVLIB
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
ADRIX
AFXEN
BCRHZ
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
ID FETCH-LOGICAL-c337t-3f0550b10eea8937c6b29e498a7a95fff57684cbc88d8f5e6cf9e66fdd1c2e783
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000402130700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-4803
IngestDate Fri Jul 11 15:27:20 EDT 2025
Wed Feb 19 02:26:32 EST 2025
Sat Nov 29 05:34:07 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://academic.oup.com/journals/pages/about_us/legal/notices
The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-3f0550b10eea8937c6b29e498a7a95fff57684cbc88d8f5e6cf9e66fdd1c2e783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/bioinformatics/article-pdf/33/10/1464/25153204/btx001.pdf
PMID 28057687
PQID 1856589738
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1856589738
pubmed_primary_28057687
crossref_primary_10_1093_bioinformatics_btx001
PublicationCentury 2000
PublicationDate 2017-05-15
2017-May-15
20170515
PublicationDateYYYYMMDD 2017-05-15
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2017
References Stephens (2023020205103540200_btx001-B14) 2015; 13
Wien (2023020205103540200_btx001-B17) 2015
Jones (2023020205103540200_btx001-B6) 2012; 40
Nicolae (2023020205103540200_btx001-B11) 2015; 31
Ochoa (2023020205103540200_btx001-B9) 2014; 31
Roguski (2023020205103540200_btx001-B12) 2014; 30
Bonfield (2023020205103540200_btx001-B1) 2014; 30
Saha (2023020205103540200_btx001-B13) 2015; 31
Grabowski (2023020205103540200_btx001-B2) 2014; 31
Hach (2023020205103540200_btx001-B4) 2014; 11
Langdon (2023020205103540200_btx001-B7) 1984; 28
Paridaens (2023020205103540200_btx001-B10) 2014
Wandelt (2023020205103540200_btx001-B16) 2014; 9
Hach (2023020205103540200_btx001-B3) 2012; 28
Marpe (2023020205103540200_btx001-B8) 2003; 13
Sze (2023020205103540200_btx001-B15) 2012; 22
References_xml – volume: 30
  start-page: 2818
  year: 2014
  ident: 2023020205103540200_btx001-B1
  article-title: The Scramble conversion tool
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu390
– volume: 28
  start-page: 3051
  year: 2012
  ident: 2023020205103540200_btx001-B3
  article-title: SCALCE: boosting sequence compression algorithms using locally consistent encoding
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts593
– volume: 31
  start-page: 1389
  year: 2014
  ident: 2023020205103540200_btx001-B2
  article-title: Disk-based compression of data from genome sequencing
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu844
– volume: 13
  start-page: 620
  year: 2003
  ident: 2023020205103540200_btx001-B8
  article-title: Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard
  publication-title: IEEE Trans. Circuits Syst. Video Technol
  doi: 10.1109/TCSVT.2003.815173
– volume: 31
  start-page: 626
  year: 2014
  ident: 2023020205103540200_btx001-B9
  article-title: iDoComp: a compression scheme for assembled genomes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu698
– volume: 9
  start-page: 315
  year: 2014
  ident: 2023020205103540200_btx001-B16
  article-title: Trends in genome compression
  publication-title: CBIO Curr. Bioinf
  doi: 10.2174/1574893609666140516010143
– volume: 11
  start-page: 1082
  year: 2014
  ident: 2023020205103540200_btx001-B4
  article-title: DeeZ: reference-based compression by local assembly
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3133
– volume: 28
  start-page: 135
  year: 1984
  ident: 2023020205103540200_btx001-B7
  article-title: An Introduction to Arithmetic Coding
  publication-title: IBM J. Res. Dev
  doi: 10.1147/rd.282.0135
– volume: 40
  start-page: i
  year: 2012
  ident: 2023020205103540200_btx001-B6
  article-title: Compression of next-generation sequencing reads aided by highly efficient de novo assembly
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks754
– volume: 31
  start-page: 3276
  year: 2015
  ident: 2023020205103540200_btx001-B11
  article-title: LFQC: a lossless compression algorithm for FASTQ files
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv384
– volume: 30
  start-page: 2213
  year: 2014
  ident: 2023020205103540200_btx001-B12
  article-title: DSRC 2–Industry-oriented compression of FASTQ files
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu208
– volume-title: High Efficiency Video Coding: Coding Tools and Specification
  year: 2015
  ident: 2023020205103540200_btx001-B17
  doi: 10.1007/978-3-662-44276-0
– volume: 13
  year: 2015
  ident: 2023020205103540200_btx001-B14
  article-title: Big Data: Astronomical or Genomical?
  publication-title: PLOS Biol
  doi: 10.1371/journal.pbio.1002195
– volume: 31
  start-page: 3468
  year: 2015
  ident: 2023020205103540200_btx001-B13
  article-title: ERGC: an efficient referential genome compression algorithm
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv399
– volume: 22
  start-page: 1778
  year: 2012
  ident: 2023020205103540200_btx001-B15
  article-title: High Throughput CABAC Entropy Coding in HEVC
  publication-title: IEEE Trans. Circuits Syst. Video Technol
  doi: 10.1109/TCSVT.2012.2221526
– year: 2014
  ident: 2023020205103540200_btx001-B10
SSID ssj0005056
Score 2.2605836
Snippet The past decade has seen the introduction of new technologies that lowered the cost of genomic sequencing increasingly. We can even observe that the cost of...
MOTIVATIONThe past decade has seen the introduction of new technologies that lowered the cost of genomic sequencing increasingly. We can even observe that the...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage 1464
SubjectTerms Algorithms
Bacteria - genetics
Data Compression - methods
Genome
Genomics - methods
High-Throughput Nucleotide Sequencing - methods
Humans
Plants - genetics
Sequence Analysis, DNA - methods
Software
Title AFRESh: an adaptive framework for compression of reads and assembled sequences with random access functionality
URI https://www.ncbi.nlm.nih.gov/pubmed/28057687
https://www.proquest.com/docview/1856589738
Volume 33
WOSCitedRecordID wos000402130700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20220930
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6C0hcEG_KY2UkblXYNMnGNrcVsOKAlj0UbW-R44eotE2qbbYq_4kfydhjp43ESnCghyiyK6eZ-Trz2R7PEPJOTy18uE24gSlKUZoi4bycJnqqVCrBoVvrNf2VnZ_z-VxcjEa_4lmYzRVrGr7ditV_VTW0gbLd0dl_UHc_KDTAPSgdrqB2uP6V4k_PQKg__CHmZiK1XGFm7xiE5eMKXSA5BsB6tgjEUWOuZqDSZllfAQvtY6xxqRZcmm6XE-nrK06cN8RFxEU33BdetCEVq0__7HKZbmP4fKgXsrf2cAETdS0NUvkZyiJU_5pc-iIv0IsVwOC-h_EnF5a58Suxl2Ydd6Yxe2QdziDt4o7Dkga4SZcNFfe2DZrh3GVj58EMBzuNCTMiHtM9qwvWvvijO8BUWfXg1V1Dt01xCWUPD6ulB0TGUzcFYzv_2Ectxq4DcidjJ8IFEM6-zXcBRcAl4xkxkR8Pn3qMz3S5p8MoQyJ0y-zGs5zZQ_IgTE_oKcLqERmZ5jG5hwVLfz4hLYLrA5UNjdCiPbQo_A66By3aWuqhBV_XtIcW7aFFHbQoQositOgAWk_J97PPs49fklCyI1F5zroktylMeetpaox0TFiVdSZMIbhkUsD_3rpXL1StONfcnphSWWHK0mqwDRlYi_wZOWzaxrwgVDsqW0uWKaCR0zKrayYzkXKrVc2l0mPyPsqvWmFmlgojKvJqKPsKZT8mb6OUK7ChbmNMNqa9WVfAWYGIC5bzMXmO4u-HjOp6eWvPK3J_B-LX5LC7vjFvyF216Rbr6yNywOb8yCPlNxIFoaQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AFRESh%3A+an+adaptive+framework+for+compression+of+reads+and+assembled+sequences+with+random+access+functionality&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Paridaens%2C+Tom&rft.au=Van+Wallendael%2C+Glenn&rft.au=De+Neve%2C+Wesley&rft.au=Lambert%2C+Peter&rft.date=2017-05-15&rft.eissn=1367-4811&rft.volume=33&rft.issue=10&rft.spage=1464&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtx001&rft_id=info%3Apmid%2F28057687&rft.externalDocID=28057687
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon