Improving constructive training of RBF networks through selective pruning and model selection

This letter proposes a constructive training method for radial basis function networks. The proposed method is an extension of the dynamic decay adjustment (DDA) algorithm, a fast constructive algorithm for classification problems. The proposed method, which is based on selective pruning and DDA mod...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 64; s. 537 - 541
Hlavní autoři: Oliveira, Adriano L.I., Melo, Bruno J.M., Meira, Silvio R.L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.03.2005
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This letter proposes a constructive training method for radial basis function networks. The proposed method is an extension of the dynamic decay adjustment (DDA) algorithm, a fast constructive algorithm for classification problems. The proposed method, which is based on selective pruning and DDA model selection, aims to improve the generalization performance of DDA without generating larger networks. Simulations using four image recognition datasets from the UCI repository demonstrate the validity of the proposed method.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2004.11.027