Improving constructive training of RBF networks through selective pruning and model selection

This letter proposes a constructive training method for radial basis function networks. The proposed method is an extension of the dynamic decay adjustment (DDA) algorithm, a fast constructive algorithm for classification problems. The proposed method, which is based on selective pruning and DDA mod...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neurocomputing (Amsterdam) Ročník 64; s. 537 - 541
Hlavní autori: Oliveira, Adriano L.I., Melo, Bruno J.M., Meira, Silvio R.L.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.03.2005
Predmet:
ISSN:0925-2312, 1872-8286
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This letter proposes a constructive training method for radial basis function networks. The proposed method is an extension of the dynamic decay adjustment (DDA) algorithm, a fast constructive algorithm for classification problems. The proposed method, which is based on selective pruning and DDA model selection, aims to improve the generalization performance of DDA without generating larger networks. Simulations using four image recognition datasets from the UCI repository demonstrate the validity of the proposed method.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2004.11.027