Exact boundary controllability of the second-order Maxwell system: Theory and numerical simulation

The exact controllability of the second order time-dependent Maxwell equations for the electric field is addressed through the Hilbert Uniqueness Method. A two-grid preconditioned conjugate gradient algorithm is employed to inverse the H.U.M. operator and to construct the numerical control. The unde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) Jg. 63; H. 7; S. 1212 - 1237
Hauptverfasser: Darbas, M., Goubet, O., Lohrengel, S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.04.2012
Elsevier
Schlagworte:
ISSN:0898-1221, 1873-7668
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The exact controllability of the second order time-dependent Maxwell equations for the electric field is addressed through the Hilbert Uniqueness Method. A two-grid preconditioned conjugate gradient algorithm is employed to inverse the H.U.M. operator and to construct the numerical control. The underlying initial value problems are discretized by Lagrange finite elements and an implicit Newmark scheme. Two-dimensional numerical experiments illustrate the performance of the method.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2011.12.046