Exact boundary controllability of the second-order Maxwell system: Theory and numerical simulation

The exact controllability of the second order time-dependent Maxwell equations for the electric field is addressed through the Hilbert Uniqueness Method. A two-grid preconditioned conjugate gradient algorithm is employed to inverse the H.U.M. operator and to construct the numerical control. The unde...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & mathematics with applications (1987) Ročník 63; číslo 7; s. 1212 - 1237
Hlavní autoři: Darbas, M., Goubet, O., Lohrengel, S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.04.2012
Elsevier
Témata:
ISSN:0898-1221, 1873-7668
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The exact controllability of the second order time-dependent Maxwell equations for the electric field is addressed through the Hilbert Uniqueness Method. A two-grid preconditioned conjugate gradient algorithm is employed to inverse the H.U.M. operator and to construct the numerical control. The underlying initial value problems are discretized by Lagrange finite elements and an implicit Newmark scheme. Two-dimensional numerical experiments illustrate the performance of the method.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2011.12.046