Exact boundary controllability of the second-order Maxwell system: Theory and numerical simulation
The exact controllability of the second order time-dependent Maxwell equations for the electric field is addressed through the Hilbert Uniqueness Method. A two-grid preconditioned conjugate gradient algorithm is employed to inverse the H.U.M. operator and to construct the numerical control. The unde...
Uloženo v:
| Vydáno v: | Computers & mathematics with applications (1987) Ročník 63; číslo 7; s. 1212 - 1237 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.04.2012
Elsevier |
| Témata: | |
| ISSN: | 0898-1221, 1873-7668 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The exact controllability of the second order time-dependent Maxwell equations for the electric field is addressed through the Hilbert Uniqueness Method. A two-grid preconditioned conjugate gradient algorithm is employed to inverse the H.U.M. operator and to construct the numerical control. The underlying initial value problems are discretized by Lagrange finite elements and an implicit Newmark scheme. Two-dimensional numerical experiments illustrate the performance of the method. |
|---|---|
| ISSN: | 0898-1221 1873-7668 |
| DOI: | 10.1016/j.camwa.2011.12.046 |