Symbolic implementation of the algorithm for calculating Adomian polynomials

In this paper, a symbolic implementation code is developed of a technique proposed by Wazwaz [Appl. Math. Comput. 111 (2000) 53] for calculating Adomian polynomials for nonlinear operators. The algorithm proposed by him [Appl. Math. Comput. 111 (2000) 53] offers a promising approach for calculating...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation Vol. 146; no. 1; pp. 257 - 271
Main Authors: Choi, H.-W., Shin, J.-G.
Format: Journal Article
Language:English
Published: New York, NY Elsevier Inc 30.12.2003
Elsevier
Subjects:
ISSN:0096-3003, 1873-5649
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, a symbolic implementation code is developed of a technique proposed by Wazwaz [Appl. Math. Comput. 111 (2000) 53] for calculating Adomian polynomials for nonlinear operators. The algorithm proposed by him [Appl. Math. Comput. 111 (2000) 53] offers a promising approach for calculating Adomian polynomials for all forms of nonlinearity, but it is not easy to implement due to its huge size of algebraic calculations, complicated trigonometric terms, and unique summation rules. It is well known that the algebraic manipulation language such as Mathematica is useful to facilitate such a hard computational work. Pattern-matching capabilities peculiar feature of Mathematica are used in index regrouping which is a key role in constructing Adomian polynomials. The computer algebra software Mathematica is used to collect terms to their order and to simplify the terms. The symbolic implementation code author developed (appearing at appendix) has the flexibility that may easily cover any length of Adomian polynomial for many forms of nonlinear cases. A nonlinear evolution equation is investigated in order to justify the availability of symbolic implementation code.
AbstractList In this paper, a symbolic implementation code is developed of a technique proposed by Wazwaz [Appl. Math. Comput. 111 (2000) 53] for calculating Adomian polynomials for nonlinear operators. The algorithm proposed by him [Appl. Math. Comput. 111 (2000) 53] offers a promising approach for calculating Adomian polynomials for all forms of nonlinearity, but it is not easy to implement due to its huge size of algebraic calculations, complicated trigonometric terms, and unique summation rules. It is well known that the algebraic manipulation language such as Mathematica is useful to facilitate such a hard computational work. Pattern-matching capabilities peculiar feature of Mathematica are used in index regrouping which is a key role in constructing Adomian polynomials. The computer algebra software Mathematica is used to collect terms to their order and to simplify the terms. The symbolic implementation code author developed (appearing at appendix) has the flexibility that may easily cover any length of Adomian polynomial for many forms of nonlinear cases. A nonlinear evolution equation is investigated in order to justify the availability of symbolic implementation code.
Author Shin, J.-G.
Choi, H.-W.
Author_xml – sequence: 1
  givenname: H.-W.
  surname: Choi
  fullname: Choi, H.-W.
  email: heydaniel69@hanmail.net
  organization: Department of Intelligent Machines Research, Hyundai Heavy Industries Electro-Mechanical Research Institute, 102-18, Mabook-Ri, Kuseong-Myun, Yongin-Shi, Kyonggi-Do 449-716, South Korea
– sequence: 2
  givenname: J.-G.
  surname: Shin
  fullname: Shin, J.-G.
  organization: Department of Naval Architecture and Ocean Engineering, Seoul National University, San 56-1, Seoul 151-742, South Korea
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15455729$$DView record in Pascal Francis
BookMark eNqFkD9PwzAQxS1UJNrCR0DKggRD4BzHTiIGVFX8kyoxFGbLcc6tUWJHTkDqtydtEANLp3fDe-_ufjMycd4hIZcUbilQcbcGKETMANg1JDcAPKWxOCFTmmcs5iItJmT6Zzkjs677BIBM0HRKVutdU_ra6sg2bY0Nul711rvIm6jfYqTqjQ-23zaR8SHSqtZf9WBwm2hR-cYqF7W-3rn9WHfn5NQMghe_OicfT4_vy5d49fb8ulysYs1Y1scUq6RKDADmmmmFhcjzKuE5pFnFS6goRy6EKkuTmqQwGplSaYaFNpkWqkA2J1djb6u64SQTlNO2k22wjQo7SXnKeZYUg-9-9Onguy6gkdqO7_VB2VpSkHuA8gBQ7ulISOQBoBRDmv9L_y04knsYczgg-LYYZKctOo2VDah7WXl7pOEH62KLxA
CODEN AMHCBQ
CitedBy_id crossref_primary_10_1038_s41598_023_45207_y
crossref_primary_10_1016_j_compchemeng_2010_02_035
crossref_primary_10_1016_j_amc_2005_02_040
crossref_primary_10_1016_j_cnsns_2004_02_002
crossref_primary_10_1016_j_chaos_2005_08_003
crossref_primary_10_1155_2021_6626236
crossref_primary_10_1016_j_amc_2010_07_046
crossref_primary_10_1016_j_amc_2006_03_011
crossref_primary_10_1016_j_cam_2005_10_017
crossref_primary_10_1016_j_amc_2010_02_015
crossref_primary_10_1016_j_amc_2011_01_007
crossref_primary_10_1016_j_mcm_2005_08_017
crossref_primary_10_1016_j_chaos_2007_07_028
Cites_doi 10.1016/0022-247X(84)90182-3
10.1016/S0096-3003(96)00281-0
10.1016/S0096-3003(99)00063-6
10.1016/0096-3003(94)00137-S
10.1016/0895-7177(96)00080-5
10.1016/0022-247X(88)90170-9
10.1016/0022-247X(84)90181-1
ContentType Journal Article
Copyright 2002 Elsevier Inc.
2004 INIST-CNRS
Copyright_xml – notice: 2002 Elsevier Inc.
– notice: 2004 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/S0096-3003(02)00541-6
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Applied Sciences
EISSN 1873-5649
EndPage 271
ExternalDocumentID 15455729
10_1016_S0096_3003_02_00541_6
S0096300302005416
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TAE
TN5
VH1
VOH
WH7
WUQ
X6Y
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c337t-1ed2d2f00e8c3cae9688d258047d5b0d15e566abbf4f29fce3aa47e9cf7c6a9e3
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000185750300017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Mon Jul 21 09:13:10 EDT 2025
Tue Nov 18 20:35:59 EST 2025
Sat Nov 29 02:46:00 EST 2025
Fri Feb 23 02:26:29 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Mathematica
Nonlinear evolution equation
Adomian polynomials
Adomian decomposition method
Pattern matching
Nonlinear operators
Non linear equation
Adomian polynomial
Applied mathematics
Decomposition method
Evolution equation
Computer algebra
Adomian method
Non linear operator
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-1ed2d2f00e8c3cae9688d258047d5b0d15e566abbf4f29fce3aa47e9cf7c6a9e3
PageCount 15
ParticipantIDs pascalfrancis_primary_15455729
crossref_citationtrail_10_1016_S0096_3003_02_00541_6
crossref_primary_10_1016_S0096_3003_02_00541_6
elsevier_sciencedirect_doi_10_1016_S0096_3003_02_00541_6
PublicationCentury 2000
PublicationDate 2003-12-30
PublicationDateYYYYMMDD 2003-12-30
PublicationDate_xml – month: 12
  year: 2003
  text: 2003-12-30
  day: 30
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Applied mathematics and computation
PublicationYear 2003
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Rach (BIB4) 1984; 102
Adomian (BIB1) 1994
Seng, Abbaoui, Cherruault (BIB5) 1996; 24
Abbaoui, Cherruault (BIB6) 1999; 102
Wazwaz (BIB9) 1997; 87
Adomian (BIB3) 1984; 102
Adomian (BIB2) 1988; 135
Wazwaz (BIB7) 1995; 69
Wazwaz (BIB10) 2000; 111
Wazwaz (BIB8) 1997
Rach (10.1016/S0096-3003(02)00541-6_BIB4) 1984; 102
Adomian (10.1016/S0096-3003(02)00541-6_BIB2) 1988; 135
Wazwaz (10.1016/S0096-3003(02)00541-6_BIB7) 1995; 69
Seng (10.1016/S0096-3003(02)00541-6_BIB5) 1996; 24
Wazwaz (10.1016/S0096-3003(02)00541-6_BIB10) 2000; 111
Abbaoui (10.1016/S0096-3003(02)00541-6_BIB6) 1999; 102
Wazwaz (10.1016/S0096-3003(02)00541-6_BIB9) 1997; 87
Adomian (10.1016/S0096-3003(02)00541-6_BIB1) 1994
Adomian (10.1016/S0096-3003(02)00541-6_BIB3) 1984; 102
Wazwaz (10.1016/S0096-3003(02)00541-6_BIB8) 1997
References_xml – volume: 87
  start-page: 199
  year: 1997
  end-page: 204
  ident: BIB9
  article-title: A study on a boundary-layer equation arising in an incompressible fluid
  publication-title: Appl. Math. Comput.
– volume: 102
  start-page: 420
  year: 1984
  end-page: 434
  ident: BIB3
  article-title: A new approach to nonlinear partial differential equations
  publication-title: J. Math. Anal. Appl.
– year: 1994
  ident: BIB1
  article-title: Solving Frontier Problems of Physics. The Decomposition Method
– volume: 102
  start-page: 77
  year: 1999
  end-page: 86
  ident: BIB6
  article-title: Convergence of Adomian’s method applied to differential equations
  publication-title: Comput. Math. Appl.
– volume: 69
  start-page: 299
  year: 1995
  end-page: 311
  ident: BIB7
  article-title: The decomposition method for approximate solution of the Goursat problem
  publication-title: Appl. Math. Comput.
– volume: 102
  start-page: 415
  year: 1984
  end-page: 419
  ident: BIB4
  article-title: A convenient computational form for the Adomian polynomials
  publication-title: J. Math. Anal. Appl.
– volume: 111
  start-page: 53
  year: 2000
  end-page: 69
  ident: BIB10
  article-title: A new algorithm for calculating adomian polynomials for nonlinear operators
  publication-title: Appl. Math. Comput.
– volume: 135
  start-page: 501
  year: 1988
  end-page: 544
  ident: BIB2
  article-title: A review of the decomposition method in applied mathematics
  publication-title: J. Math. Anal. Appl.
– volume: 24
  start-page: 59
  year: 1996
  end-page: 65
  ident: BIB5
  article-title: Adomian’s polynomials for nonlinear operators
  publication-title: Math. Comput. Modell.
– year: 1997
  ident: BIB8
  article-title: A First Course in Integral Equations
– volume: 102
  start-page: 420
  year: 1984
  ident: 10.1016/S0096-3003(02)00541-6_BIB3
  article-title: A new approach to nonlinear partial differential equations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(84)90182-3
– volume: 87
  start-page: 199
  year: 1997
  ident: 10.1016/S0096-3003(02)00541-6_BIB9
  article-title: A study on a boundary-layer equation arising in an incompressible fluid
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(96)00281-0
– volume: 102
  start-page: 77
  year: 1999
  ident: 10.1016/S0096-3003(02)00541-6_BIB6
  article-title: Convergence of Adomian’s method applied to differential equations
  publication-title: Comput. Math. Appl.
– volume: 111
  start-page: 53
  year: 2000
  ident: 10.1016/S0096-3003(02)00541-6_BIB10
  article-title: A new algorithm for calculating adomian polynomials for nonlinear operators
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(99)00063-6
– volume: 69
  start-page: 299
  year: 1995
  ident: 10.1016/S0096-3003(02)00541-6_BIB7
  article-title: The decomposition method for approximate solution of the Goursat problem
  publication-title: Appl. Math. Comput.
  doi: 10.1016/0096-3003(94)00137-S
– year: 1997
  ident: 10.1016/S0096-3003(02)00541-6_BIB8
– volume: 24
  start-page: 59
  year: 1996
  ident: 10.1016/S0096-3003(02)00541-6_BIB5
  article-title: Adomian’s polynomials for nonlinear operators
  publication-title: Math. Comput. Modell.
  doi: 10.1016/0895-7177(96)00080-5
– year: 1994
  ident: 10.1016/S0096-3003(02)00541-6_BIB1
– volume: 135
  start-page: 501
  year: 1988
  ident: 10.1016/S0096-3003(02)00541-6_BIB2
  article-title: A review of the decomposition method in applied mathematics
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(88)90170-9
– volume: 102
  start-page: 415
  year: 1984
  ident: 10.1016/S0096-3003(02)00541-6_BIB4
  article-title: A convenient computational form for the Adomian polynomials
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(84)90181-1
SSID ssj0007614
Score 1.807384
Snippet In this paper, a symbolic implementation code is developed of a technique proposed by Wazwaz [Appl. Math. Comput. 111 (2000) 53] for calculating Adomian...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 257
SubjectTerms Adomian decomposition method
Adomian polynomials
Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial intelligence
Computer science; control theory; systems
Exact sciences and technology
Mathematica
Mathematics
Methods of scientific computing (including symbolic computation, algebraic computation)
Nonlinear evolution equation
Nonlinear operators
Numerical analysis. Scientific computation
Pattern matching
Pattern recognition. Digital image processing. Computational geometry
Sciences and techniques of general use
Theoretical computing
Title Symbolic implementation of the algorithm for calculating Adomian polynomials
URI https://dx.doi.org/10.1016/S0096-3003(02)00541-6
Volume 146
WOSCitedRecordID wos000185750300017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywGEEE9RHlUOHODgxXESP45VVV4qFVIL7C1yHIettJtEmy1q_z3j2HmBUAGJS7SK7Fjy99n-ZtYzg9CLUKqMUk1wmAuN4zzMsQJDApuE6YwSRmnrzPlyxI-PxWIhP3mHftOWE-BlKS4uZP1foYZ3ALYNnf0LuPuPwgv4DaDDE2CH5x8Bf3K5zmyyXxsA6e-Gd6rQiky1-lZtzrbLdXvBEBDSbQEv6xzJq7Vd7nW1urTBymrVjKVrp1fXfaLXpguKq8-nf-gfLCtXDHuOv857H87SF_6a47fzibMhalMaksED1kXBTC5pWjMIWhG3URm3kQoe4YS5dKT9Tuu9jWNK-X3TZan2RzB1VVl-2d2do-GkHw80uM0fK63uDPFPGbXbM7pta5sS2jZi19EOBROJzNDO_vvDxYf-1ObM5YHvvj1Ee70eBnxJ6Cs_2O90zO1aNYBd4cqijLTK6V10xxsZwb4jxz10zZT30a2PA3AP0FFHk2BKk6AqAmgW9DQJgCbBiCaBp0kwoslD9PnN4enBO-wra2AdRXyLQ5PTnBaEGKEjrYxkQuQUpiXmeZKRPExgrTKVZUVcUFloEykVcyN1wTVT0kSP0KysSvMYBaEwmnMmBVFxTJXMOCuIziIQpnHBuNpFcTdPqfZp5231k1U63C-E6U3t9KaEpu30pmwXzftutcu7clUH0YGQevHoRGEK7Lmq694EtGFAMC8SsD6f_Pu3n6Kbwzp6hmbbzbl5jm7o79uzZrPnSfgD54mYxg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Symbolic+implementation+of+the+algorithm+for+calculating+Adomian+polynomials&rft.jtitle=Applied+mathematics+and+computation&rft.au=Choi%2C+H.-W.&rft.au=Shin%2C+J.-G.&rft.date=2003-12-30&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.eissn=1873-5649&rft.volume=146&rft.issue=1&rft.spage=257&rft.epage=271&rft_id=info:doi/10.1016%2FS0096-3003%2802%2900541-6&rft.externalDocID=S0096300302005416
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon