A measure of relative entropy between individual sequences with application to universal classification
A new notion of empirical informational divergence (relative entropy) between two individual sequences is introduced. If the two sequences are independent realizations of two finite-order, finite alphabet, stationary Markov processes, the empirical relative entropy converges to the relative entropy...
Uloženo v:
| Vydáno v: | IEEE transactions on information theory Ročník 39; číslo 4; s. 1270 - 1279 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
IEEE
01.07.1993
Institute of Electrical and Electronics Engineers |
| Témata: | |
| ISSN: | 0018-9448 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A new notion of empirical informational divergence (relative entropy) between two individual sequences is introduced. If the two sequences are independent realizations of two finite-order, finite alphabet, stationary Markov processes, the empirical relative entropy converges to the relative entropy almost surely. This empirical divergence is based on a version of the Lempel-Ziv data compression algorithm. A simple universal algorithm for classifying individual sequences into a finite number of classes, which is based on the empirical divergence, is introduced. The algorithm discriminates between the classes whenever they are distinguishable by some finite-memory classifier for almost every given training set and almost any test sequence from these classes. It is universal in the sense that it is independent of the unknown sources.< > |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0018-9448 |
| DOI: | 10.1109/18.243444 |