Parameters’ Identification of Vessel Based on Ant Colony Optimization Algorithm

In this paper, the ant colony optimization (ACO) method is used to identify the parameters of a 3-DOF nonlinear vessel model. Identifying the parameters is abstracted as a nonlinear optimization problem to solve through the ant colony optimization algorithm. The identification procedure is divided i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical problems in engineering Ročník 2021; s. 1 - 13
Hlavní autoři: Zhao, Chen, Li, Xiaojian
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Hindawi 26.07.2021
John Wiley & Sons, Inc
Témata:
ISSN:1024-123X, 1563-5147
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, the ant colony optimization (ACO) method is used to identify the parameters of a 3-DOF nonlinear vessel model. Identifying the parameters is abstracted as a nonlinear optimization problem to solve through the ant colony optimization algorithm. The identification procedure is divided into two parts. The first part of the identification procedure is to identify the parameters related to surge motion. The second part of the identification procedure is to identify the rest parameters of the vessel’s kinetics model. In the surge model identification procedure, the transient motor speed is used to generate the training data, and in the sway and yaw motion identification procedure, the zigzag maneuvering with different motor speeds is used to generate the training data. All the parameters are identified by the ACO method and the least-square (LS) method based on the training data and then validated on the validation data. The prediction performance of parameters identified by different methods is compared in the simulation to demonstrate the effectiveness of the ACO algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1024-123X
1563-5147
DOI:10.1155/2021/6256785