A singularly perturbed Dirichlet problem for the Laplace operator in a periodically perforated domain. A functional analytic approach
Let Ω be a sufficiently regular bounded connected open subset of Rn such that 0 ∈ Ω and that Rn∖clΩ is connected. Then we take q11, … ,qnn ∈ ]0,+ ∞ [and . If ε is a small positive number, then we define the periodically perforated domain , where {e1, … ,en} is the canonical basis of Rn. For ε small...
Uložené v:
| Vydané v: | Mathematical methods in the applied sciences Ročník 35; číslo 3; s. 334 - 349 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Chichester, UK
John Wiley & Sons, Ltd
01.02.2012
|
| Predmet: | |
| ISSN: | 0170-4214, 1099-1476 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Let Ω be a sufficiently regular bounded connected open subset of Rn such that 0 ∈ Ω and that Rn∖clΩ is connected. Then we take q11, … ,qnn ∈ ]0,+ ∞ [and
. If ε is a small positive number, then we define the periodically perforated domain
, where {e1, … ,en} is the canonical basis of Rn. For ε small and positive, we introduce a particular Dirichlet problem for the Laplace operator in the set
. Namely, we consider a Dirichlet condition on the boundary of the set p + εΩ, together with a periodicity condition. Then we show real analytic continuation properties of the solution and of the corresponding energy integral as functionals of the pair of ε and of the Dirichlet datum on p + ε∂Ω, around a degenerate pair with ε = 0. Copyright © 2011 John Wiley & Sons, Ltd. |
|---|---|
| Bibliografia: | istex:6A06CD55F8A32D407C5F2AB159C603FCFDE64E22 ark:/67375/WNG-K6R1RPVJ-R ArticleID:MMA1575 |
| ISSN: | 0170-4214 1099-1476 |
| DOI: | 10.1002/mma.1575 |