A singularly perturbed Dirichlet problem for the Laplace operator in a periodically perforated domain. A functional analytic approach

Let Ω be a sufficiently regular bounded connected open subset of Rn such that 0 ∈ Ω and that Rn∖clΩ is connected. Then we take q11, … ,qnn ∈ ]0,+ ∞ [and . If ε is a small positive number, then we define the periodically perforated domain , where {e1, … ,en} is the canonical basis of Rn. For ε small...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical methods in the applied sciences Ročník 35; číslo 3; s. 334 - 349
Hlavný autor: Musolino, Paolo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Chichester, UK John Wiley & Sons, Ltd 01.02.2012
Predmet:
ISSN:0170-4214, 1099-1476
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Let Ω be a sufficiently regular bounded connected open subset of Rn such that 0 ∈ Ω and that Rn∖clΩ is connected. Then we take q11, … ,qnn ∈ ]0,+ ∞ [and . If ε is a small positive number, then we define the periodically perforated domain , where {e1, … ,en} is the canonical basis of Rn. For ε small and positive, we introduce a particular Dirichlet problem for the Laplace operator in the set . Namely, we consider a Dirichlet condition on the boundary of the set p + εΩ, together with a periodicity condition. Then we show real analytic continuation properties of the solution and of the corresponding energy integral as functionals of the pair of ε and of the Dirichlet datum on p + ε∂Ω, around a degenerate pair with ε = 0. Copyright © 2011 John Wiley & Sons, Ltd.
Bibliografia:istex:6A06CD55F8A32D407C5F2AB159C603FCFDE64E22
ark:/67375/WNG-K6R1RPVJ-R
ArticleID:MMA1575
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.1575