MR-search: massively parallel heuristic search

SUMMARY MR‐Search is a framework for massively parallel heuristic search. Based on the MapReduce paradigm, it efficiently utilizes all available resources: processors, memories, and disks. MR‐Search uses OpenMP on shared memory systems, Message Passing Interface on clusters with distributed memory,...

Full description

Saved in:
Bibliographic Details
Published in:Concurrency and computation Vol. 25; no. 1; pp. 40 - 54
Main Authors: Schütt, Thorsten, Reinefeld, Alexander, Maier, Robert
Format: Journal Article
Language:English
Published: Blackwell Publishing Ltd 01.01.2013
Subjects:
ISSN:1532-0626, 1532-0634
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:SUMMARY MR‐Search is a framework for massively parallel heuristic search. Based on the MapReduce paradigm, it efficiently utilizes all available resources: processors, memories, and disks. MR‐Search uses OpenMP on shared memory systems, Message Passing Interface on clusters with distributed memory, and a combination of both on clusters with multi‐core processors. Large graphs that do not fit into the main memory can be efficiently processed with an out‐of‐core variant. We implemented two node expansion strategies in MR‐Search: breadth‐first frontier search and breadth‐first iterative deepening A*. With breadth‐first frontier search, we computed large and powerful table‐driven heuristics, so‐called pattern databases that exceed the main memory capacity. These pattern databases were then used to solve random instances of the 24‐puzzle with breadth‐first iterative deepening A* on systems with up to 4093 processor cores. MR‐Search is conceptually simple. It takes care of data partitioning, process scheduling, out‐of‐core data merging, communication, and synchronization. Application developers benefit from the parallel computational capacity without having the burden of implementing parallel application code. Copyright © 2011 John Wiley & Sons, Ltd.
Bibliography:ark:/67375/WNG-P6CBZKC7-L
istex:BA916D21372CC621A270242B0B2F4B60778EFA42
ArticleID:CPE1833
ISSN:1532-0626
1532-0634
DOI:10.1002/cpe.1833