Bayesian backcalculation of pavement properties using parallel transitional Markov chain Monte Carlo
This paper presents a novel Bayesian method for backcalculation of pavement dynamic modulus, stiffness, thickness, and damping using falling weight deflectometer (FWD) data. The backcalculation procedure yields estimates and uncertainties for each pavement property of interest. As a by‐product of th...
Gespeichert in:
| Veröffentlicht in: | Computer-aided civil and infrastructure engineering Jg. 39; H. 13; S. 1911 - 1927 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken
Wiley Subscription Services, Inc
01.07.2024
|
| Schlagworte: | |
| ISSN: | 1093-9687, 1467-8667 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper presents a novel Bayesian method for backcalculation of pavement dynamic modulus, stiffness, thickness, and damping using falling weight deflectometer (FWD) data. The backcalculation procedure yields estimates and uncertainties for each pavement property of interest. As a by‐product of the Bayesian procedure, information about measurement error is recovered. The Bayesian method is tested on simulated FWD backcalculations and compared with a state‐of‐the‐art trust‐region optimization algorithm, and it achieves estimation errors that are nearly an order of magnitude lower than the trust‐region solver. Confidence intervals are computed from thousands of simulated backcalculations and are shown to quantify uncertainty in estimated pavement properties. To cope with the computational expense of backcalculation, a fully parallel transitional Markov chain Monte Carlo procedure is developed. The fully parallel algorithm scales well to computation with many processor cores, and it yields up to a 50% reduction in computation time when compared to existing parallel implementations. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1093-9687 1467-8667 |
| DOI: | 10.1111/mice.13123 |