Maximum independent set for intervals by divide and conquer with pruning
Suppose a given set of n intervals contains a maximum independent set of k disjoint intervals. This brief note demonstrates that “divide and conquer with pruning” produces an easy, output‐sensitive O(n log k)‐time algorithm to compute such a maximum independent set. © 2006 Wiley Periodicals, Inc. NE...
Gespeichert in:
| Veröffentlicht in: | Networks Jg. 49; H. 2; S. 158 - 159 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.03.2007
John Wiley & Sons |
| Schlagworte: | |
| ISSN: | 0028-3045, 1097-0037 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Suppose a given set of n intervals contains a maximum independent set of k disjoint intervals. This brief note demonstrates that “divide and conquer with pruning” produces an easy, output‐sensitive O(n log k)‐time algorithm to compute such a maximum independent set. © 2006 Wiley Periodicals, Inc. NETWORKS, Vol. 49(2), 158–159 2007 |
|---|---|
| Bibliographie: | ArticleID:NET20150 ark:/67375/WNG-RC6GR6Z7-W istex:144454F97E89989242E997B60BD48D785E09BEE4 NGA/Darpa - No. HM1582-05-2-0003 NSF - No. 0086013; No. 0429901 |
| ISSN: | 0028-3045 1097-0037 |
| DOI: | 10.1002/net.20150 |