Maximum independent set for intervals by divide and conquer with pruning

Suppose a given set of n intervals contains a maximum independent set of k disjoint intervals. This brief note demonstrates that “divide and conquer with pruning” produces an easy, output‐sensitive O(n log k)‐time algorithm to compute such a maximum independent set. © 2006 Wiley Periodicals, Inc. NE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Networks Jg. 49; H. 2; S. 158 - 159
1. Verfasser: Snoeyink, Jack
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.03.2007
John Wiley & Sons
Schlagworte:
ISSN:0028-3045, 1097-0037
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Suppose a given set of n intervals contains a maximum independent set of k disjoint intervals. This brief note demonstrates that “divide and conquer with pruning” produces an easy, output‐sensitive O(n log k)‐time algorithm to compute such a maximum independent set. © 2006 Wiley Periodicals, Inc. NETWORKS, Vol. 49(2), 158–159 2007
Bibliographie:ArticleID:NET20150
ark:/67375/WNG-RC6GR6Z7-W
istex:144454F97E89989242E997B60BD48D785E09BEE4
NGA/Darpa - No. HM1582-05-2-0003
NSF - No. 0086013; No. 0429901
ISSN:0028-3045
1097-0037
DOI:10.1002/net.20150