A comprehensive review of quantum machine learning: from NISQ to fault tolerance
Quantum machine learning, which involves running machine learning algorithms on quantum devices, has garnered significant attention in both academic and business circles. In this paper, we offer a comprehensive and unbiased review of the various concepts that have emerged in the field of quantum mac...
Uložené v:
| Vydané v: | Reports on progress in physics Ročník 87; číslo 11 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
01.11.2024
|
| Predmet: | |
| ISSN: | 1361-6633, 1361-6633 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Quantum machine learning, which involves running machine learning algorithms on quantum devices, has garnered significant attention in both academic and business circles. In this paper, we offer a comprehensive and unbiased review of the various concepts that have emerged in the field of quantum machine learning. This includes techniques used in Noisy Intermediate-Scale Quantum (NISQ) technologies and approaches for algorithms compatible with fault-tolerant quantum computing hardware. Our review covers fundamental concepts, algorithms, and the statistical learning theory pertinent to quantum machine learning. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ISSN: | 1361-6633 1361-6633 |
| DOI: | 10.1088/1361-6633/ad7f69 |