A comprehensive review of quantum machine learning: from NISQ to fault tolerance

Quantum machine learning, which involves running machine learning algorithms on quantum devices, has garnered significant attention in both academic and business circles. In this paper, we offer a comprehensive and unbiased review of the various concepts that have emerged in the field of quantum mac...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Reports on progress in physics Ročník 87; číslo 11
Hlavní autoři: Wang, Yunfei, Liu, Junyu
Médium: Journal Article
Jazyk:angličtina
Vydáno: England 01.11.2024
Témata:
ISSN:1361-6633, 1361-6633
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Quantum machine learning, which involves running machine learning algorithms on quantum devices, has garnered significant attention in both academic and business circles. In this paper, we offer a comprehensive and unbiased review of the various concepts that have emerged in the field of quantum machine learning. This includes techniques used in Noisy Intermediate-Scale Quantum (NISQ) technologies and approaches for algorithms compatible with fault-tolerant quantum computing hardware. Our review covers fundamental concepts, algorithms, and the statistical learning theory pertinent to quantum machine learning.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:1361-6633
1361-6633
DOI:10.1088/1361-6633/ad7f69