A comprehensive review of quantum machine learning: from NISQ to fault tolerance
Quantum machine learning, which involves running machine learning algorithms on quantum devices, has garnered significant attention in both academic and business circles. In this paper, we offer a comprehensive and unbiased review of the various concepts that have emerged in the field of quantum mac...
Gespeichert in:
| Veröffentlicht in: | Reports on progress in physics Jg. 87; H. 11 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
01.11.2024
|
| Schlagworte: | |
| ISSN: | 1361-6633, 1361-6633 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Quantum machine learning, which involves running machine learning algorithms on quantum devices, has garnered significant attention in both academic and business circles. In this paper, we offer a comprehensive and unbiased review of the various concepts that have emerged in the field of quantum machine learning. This includes techniques used in Noisy Intermediate-Scale Quantum (NISQ) technologies and approaches for algorithms compatible with fault-tolerant quantum computing hardware. Our review covers fundamental concepts, algorithms, and the statistical learning theory pertinent to quantum machine learning. |
|---|---|
| AbstractList | Quantum machine learning, which involves running machine learning algorithms on quantum devices, has garnered significant attention in both academic and business circles. In this paper, we offer a comprehensive and unbiased review of the various concepts that have emerged in the field of quantum machine learning. This includes techniques used in Noisy Intermediate-Scale Quantum (NISQ) technologies and approaches for algorithms compatible with fault-tolerant quantum computing hardware. Our review covers fundamental concepts, algorithms, and the statistical learning theory pertinent to quantum machine learning.Quantum machine learning, which involves running machine learning algorithms on quantum devices, has garnered significant attention in both academic and business circles. In this paper, we offer a comprehensive and unbiased review of the various concepts that have emerged in the field of quantum machine learning. This includes techniques used in Noisy Intermediate-Scale Quantum (NISQ) technologies and approaches for algorithms compatible with fault-tolerant quantum computing hardware. Our review covers fundamental concepts, algorithms, and the statistical learning theory pertinent to quantum machine learning. Quantum machine learning, which involves running machine learning algorithms on quantum devices, has garnered significant attention in both academic and business circles. In this paper, we offer a comprehensive and unbiased review of the various concepts that have emerged in the field of quantum machine learning. This includes techniques used in Noisy Intermediate-Scale Quantum (NISQ) technologies and approaches for algorithms compatible with fault-tolerant quantum computing hardware. Our review covers fundamental concepts, algorithms, and the statistical learning theory pertinent to quantum machine learning. |
| Author | Liu, Junyu Wang, Yunfei |
| Author_xml | – sequence: 1 givenname: Yunfei surname: Wang fullname: Wang, Yunfei organization: Brandeis University, Brandeis University, Waltham, Massachusetts, 02453-2728, UNITED STATES – sequence: 2 givenname: Junyu orcidid: 0000-0003-1669-8039 surname: Liu fullname: Liu, Junyu organization: PME, The University of Chicago, The University of Chicago, Chicago, Illinois, 60637-1476, UNITED STATES |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39321817$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkElPwzAUhC1URBe4c0I-cgn1kjgxt6piqVSxiN6jZ-eZBiVO6yRF_HsiURCn-WY0msNMycg3Hgm55OyGsyybc6l4pJSUcyhSp_QJmfxFo388JtO2_WCM80zoMzKWWgqe8XRCXhbUNvUu4BZ9Wx6QBjyU-EkbR_c9-K6vaQ12W3qkFULwpX-_pS40NX1avb3SrqEO-qoboMIA3uI5OXVQtXhx1BnZ3N9tlo_R-vlhtVysIyul6iJXmFgIDshtClZjBponwhhMTGJiwEImLJPaphk6I2CwcTx440AxwZiYkeuf2V1o9j22XV6XrcWqAo9N3-aSM63TWGk1VK-O1d7UWOS7UNYQvvLfE8Q3gOxg0w |
| CitedBy_id | crossref_primary_10_1103_PhysRevResearch_7_013082 crossref_primary_10_3390_make7030075 crossref_primary_10_1007_s42484_025_00266_4 crossref_primary_10_1103_PhysRevX_15_021057 crossref_primary_10_3390_electronics14112189 crossref_primary_10_1007_s10791_025_09634_x crossref_primary_10_1007_s13218_024_00856_7 crossref_primary_10_7498_aps_74_20250108 crossref_primary_10_1007_s11227_025_06966_9 crossref_primary_10_1007_s12046_024_02660_3 crossref_primary_10_1109_ACCESS_2025_3599147 crossref_primary_10_3389_frai_2025_1496948 crossref_primary_10_1103_PhysRevA_111_033718 crossref_primary_10_4218_etrij_2024_0144 crossref_primary_10_35848_1347_4065_adf427 crossref_primary_10_1140_epjs_s11734_025_01760_3 crossref_primary_10_1002_aidi_202400023 crossref_primary_10_1038_s41746_025_01597_z crossref_primary_10_1002_qute_202400716 crossref_primary_10_1109_MNANO_2025_3586032 |
| ContentType | Journal Article |
| Copyright | 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
| Copyright_xml | – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
| DBID | NPM 7X8 |
| DOI | 10.1088/1361-6633/ad7f69 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1361-6633 |
| ExternalDocumentID | 39321817 |
| Genre | Journal Article |
| GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABHWH ABJNI ABQJV ACAFW ACBEA ACGFO ACGFS ACHIP ACNCT AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP N5L N9A NPM P2P PJBAE R4D RIN RKQ RNS RO9 ROL RPA SY9 TN5 UCJ W28 WH7 XPP ZMT ~02 7X8 ADEQX AEINN |
| ID | FETCH-LOGICAL-c336t-fdb4221ae1c7ac9e8a9152bbe5b5b4aed350839c78efb2ad3544839bfa602002 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001334283900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1361-6633 |
| IngestDate | Sun Aug 24 04:06:48 EDT 2025 Wed Feb 19 02:09:38 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | machine learning quantum algorithms quantum computing |
| Language | English |
| License | 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c336t-fdb4221ae1c7ac9e8a9152bbe5b5b4aed350839c78efb2ad3544839bfa602002 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-1669-8039 |
| PMID | 39321817 |
| PQID | 3109974696 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3109974696 pubmed_primary_39321817 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Reports on progress in physics |
| PublicationTitleAlternate | Rep Prog Phys |
| PublicationYear | 2024 |
| SSID | ssj0011829 |
| Score | 2.5957618 |
| SecondaryResourceType | review_article |
| Snippet | Quantum machine learning, which involves running machine learning algorithms on quantum devices, has garnered significant attention in both academic and... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| Title | A comprehensive review of quantum machine learning: from NISQ to fault tolerance |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39321817 https://www.proquest.com/docview/3109974696 |
| Volume | 87 |
| WOSCitedRecordID | wos001334283900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwGA_qFLz4fswXEbyGrUnWLF5ExKEHy8QdditJmqiwtdva-vf7pe3cTQQvJS20lK_f49d8jx9CN0GoNTfcEcmpIJwaWCWaE20c1Z7iWLpuRTYhoqg_Hsths-GWN2WVS59YOeokM36PvOMnWAL2DWV4N5sTzxrls6sNhcY6ajGAMt4wxXiVRQDsLOu-q4BAZGVNmhIMq_NzraMS4cJfAGYVaAa7_33FPbTTQEx8X-vEPlqz6QHaqko9TX6IhvfY15Ev7Eddu47r7hWcOTwvQc7lFE-rCkuLG0qJ91vsu1Bw9Pz2iosMO1VOClhMrGflsEdoNHgcPTyRhleBGMbCgjj4GJQGygZGKCNtX0mI4lrbnu5prmzC_Ix4aUTfOk0VnMI_HJPaqbDrazqO0UaapfYUYe0HhLmu0qJHeZIEymkOzpPCEx1ER9ZG10tJxaC2PhehUpuVebySVRud1OKOZ_V8jZgBpgTgIc7-cPc52qYAM-ruwAvUcmC09hJtmq_iM19cVfoAx2j48g1Y0b-v |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+review+of+quantum+machine+learning%3A+from+NISQ+to+fault+tolerance&rft.jtitle=Reports+on+progress+in+physics&rft.au=Wang%2C+Yunfei&rft.au=Liu%2C+Junyu&rft.date=2024-11-01&rft.eissn=1361-6633&rft_id=info:doi/10.1088%2F1361-6633%2Fad7f69&rft_id=info%3Apmid%2F39321817&rft_id=info%3Apmid%2F39321817&rft.externalDocID=39321817 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-6633&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-6633&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-6633&client=summon |