A comprehensive review of quantum machine learning: from NISQ to fault tolerance

Quantum machine learning, which involves running machine learning algorithms on quantum devices, has garnered significant attention in both academic and business circles. In this paper, we offer a comprehensive and unbiased review of the various concepts that have emerged in the field of quantum mac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reports on progress in physics Jg. 87; H. 11
Hauptverfasser: Wang, Yunfei, Liu, Junyu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England 01.11.2024
Schlagworte:
ISSN:1361-6633, 1361-6633
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Quantum machine learning, which involves running machine learning algorithms on quantum devices, has garnered significant attention in both academic and business circles. In this paper, we offer a comprehensive and unbiased review of the various concepts that have emerged in the field of quantum machine learning. This includes techniques used in Noisy Intermediate-Scale Quantum (NISQ) technologies and approaches for algorithms compatible with fault-tolerant quantum computing hardware. Our review covers fundamental concepts, algorithms, and the statistical learning theory pertinent to quantum machine learning.
AbstractList Quantum machine learning, which involves running machine learning algorithms on quantum devices, has garnered significant attention in both academic and business circles. In this paper, we offer a comprehensive and unbiased review of the various concepts that have emerged in the field of quantum machine learning. This includes techniques used in Noisy Intermediate-Scale Quantum (NISQ) technologies and approaches for algorithms compatible with fault-tolerant quantum computing hardware. Our review covers fundamental concepts, algorithms, and the statistical learning theory pertinent to quantum machine learning.Quantum machine learning, which involves running machine learning algorithms on quantum devices, has garnered significant attention in both academic and business circles. In this paper, we offer a comprehensive and unbiased review of the various concepts that have emerged in the field of quantum machine learning. This includes techniques used in Noisy Intermediate-Scale Quantum (NISQ) technologies and approaches for algorithms compatible with fault-tolerant quantum computing hardware. Our review covers fundamental concepts, algorithms, and the statistical learning theory pertinent to quantum machine learning.
Quantum machine learning, which involves running machine learning algorithms on quantum devices, has garnered significant attention in both academic and business circles. In this paper, we offer a comprehensive and unbiased review of the various concepts that have emerged in the field of quantum machine learning. This includes techniques used in Noisy Intermediate-Scale Quantum (NISQ) technologies and approaches for algorithms compatible with fault-tolerant quantum computing hardware. Our review covers fundamental concepts, algorithms, and the statistical learning theory pertinent to quantum machine learning.
Author Liu, Junyu
Wang, Yunfei
Author_xml – sequence: 1
  givenname: Yunfei
  surname: Wang
  fullname: Wang, Yunfei
  organization: Brandeis University, Brandeis University, Waltham, Massachusetts, 02453-2728, UNITED STATES
– sequence: 2
  givenname: Junyu
  orcidid: 0000-0003-1669-8039
  surname: Liu
  fullname: Liu, Junyu
  organization: PME, The University of Chicago, The University of Chicago, Chicago, Illinois, 60637-1476, UNITED STATES
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39321817$$D View this record in MEDLINE/PubMed
BookMark eNpNkElPwzAUhC1URBe4c0I-cgn1kjgxt6piqVSxiN6jZ-eZBiVO6yRF_HsiURCn-WY0msNMycg3Hgm55OyGsyybc6l4pJSUcyhSp_QJmfxFo388JtO2_WCM80zoMzKWWgqe8XRCXhbUNvUu4BZ9Wx6QBjyU-EkbR_c9-K6vaQ12W3qkFULwpX-_pS40NX1avb3SrqEO-qoboMIA3uI5OXVQtXhx1BnZ3N9tlo_R-vlhtVysIyul6iJXmFgIDshtClZjBponwhhMTGJiwEImLJPaphk6I2CwcTx440AxwZiYkeuf2V1o9j22XV6XrcWqAo9N3-aSM63TWGk1VK-O1d7UWOS7UNYQvvLfE8Q3gOxg0w
CitedBy_id crossref_primary_10_1103_PhysRevResearch_7_013082
crossref_primary_10_3390_make7030075
crossref_primary_10_1007_s42484_025_00266_4
crossref_primary_10_1103_PhysRevX_15_021057
crossref_primary_10_3390_electronics14112189
crossref_primary_10_1007_s10791_025_09634_x
crossref_primary_10_1007_s13218_024_00856_7
crossref_primary_10_7498_aps_74_20250108
crossref_primary_10_1007_s11227_025_06966_9
crossref_primary_10_1007_s12046_024_02660_3
crossref_primary_10_1109_ACCESS_2025_3599147
crossref_primary_10_3389_frai_2025_1496948
crossref_primary_10_1103_PhysRevA_111_033718
crossref_primary_10_4218_etrij_2024_0144
crossref_primary_10_35848_1347_4065_adf427
crossref_primary_10_1140_epjs_s11734_025_01760_3
crossref_primary_10_1002_aidi_202400023
crossref_primary_10_1038_s41746_025_01597_z
crossref_primary_10_1002_qute_202400716
crossref_primary_10_1109_MNANO_2025_3586032
ContentType Journal Article
Copyright 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
DBID NPM
7X8
DOI 10.1088/1361-6633/ad7f69
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1361-6633
ExternalDocumentID 39321817
Genre Journal Article
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ACNCT
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
NPM
P2P
PJBAE
R4D
RIN
RKQ
RNS
RO9
ROL
RPA
SY9
TN5
UCJ
W28
WH7
XPP
ZMT
~02
7X8
ADEQX
AEINN
ID FETCH-LOGICAL-c336t-fdb4221ae1c7ac9e8a9152bbe5b5b4aed350839c78efb2ad3544839bfa602002
IEDL.DBID 7X8
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001334283900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1361-6633
IngestDate Sun Aug 24 04:06:48 EDT 2025
Wed Feb 19 02:09:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords machine learning
quantum algorithms
quantum computing
Language English
License 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-fdb4221ae1c7ac9e8a9152bbe5b5b4aed350839c78efb2ad3544839bfa602002
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1669-8039
PMID 39321817
PQID 3109974696
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3109974696
pubmed_primary_39321817
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Reports on progress in physics
PublicationTitleAlternate Rep Prog Phys
PublicationYear 2024
SSID ssj0011829
Score 2.5957618
SecondaryResourceType review_article
Snippet Quantum machine learning, which involves running machine learning algorithms on quantum devices, has garnered significant attention in both academic and...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
Title A comprehensive review of quantum machine learning: from NISQ to fault tolerance
URI https://www.ncbi.nlm.nih.gov/pubmed/39321817
https://www.proquest.com/docview/3109974696
Volume 87
WOSCitedRecordID wos001334283900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwGA_qFLz4fswXEbyGrUnWLF5ExKEHy8QdditJmqiwtdva-vf7pe3cTQQvJS20lK_f49d8jx9CN0GoNTfcEcmpIJwaWCWaE20c1Z7iWLpuRTYhoqg_Hsths-GWN2WVS59YOeokM36PvOMnWAL2DWV4N5sTzxrls6sNhcY6ajGAMt4wxXiVRQDsLOu-q4BAZGVNmhIMq_NzraMS4cJfAGYVaAa7_33FPbTTQEx8X-vEPlqz6QHaqko9TX6IhvfY15Ev7Eddu47r7hWcOTwvQc7lFE-rCkuLG0qJ91vsu1Bw9Pz2iosMO1VOClhMrGflsEdoNHgcPTyRhleBGMbCgjj4GJQGygZGKCNtX0mI4lrbnu5prmzC_Ix4aUTfOk0VnMI_HJPaqbDrazqO0UaapfYUYe0HhLmu0qJHeZIEymkOzpPCEx1ER9ZG10tJxaC2PhehUpuVebySVRud1OKOZ_V8jZgBpgTgIc7-cPc52qYAM-ruwAvUcmC09hJtmq_iM19cVfoAx2j48g1Y0b-v
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+review+of+quantum+machine+learning%3A+from+NISQ+to+fault+tolerance&rft.jtitle=Reports+on+progress+in+physics&rft.au=Wang%2C+Yunfei&rft.au=Liu%2C+Junyu&rft.date=2024-11-01&rft.eissn=1361-6633&rft_id=info:doi/10.1088%2F1361-6633%2Fad7f69&rft_id=info%3Apmid%2F39321817&rft_id=info%3Apmid%2F39321817&rft.externalDocID=39321817
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-6633&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-6633&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-6633&client=summon