On the multiplicative complexity of Boolean functions over the basis [formula omitted]
The multiplicative complexity c ∧(f) of a Boolean function f is the minimum number of AND gates in a circuit representing f which employs only AND, XOR and NOT gates. A constructive upper bound, c ∧(f)=2 (n/2)+1−n/2−2 , for any Boolean function f on n variables ( n even) is given. A counting argumen...
Uloženo v:
| Vydáno v: | Theoretical computer science Ročník 235; číslo 1; s. 43 - 57 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
17.03.2000
Elsevier |
| Témata: | |
| ISSN: | 0304-3975, 1879-2294 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The multiplicative complexity
c
∧(f)
of a Boolean function
f is the minimum number of AND gates in a circuit representing
f which employs only AND, XOR and NOT gates. A constructive upper bound,
c
∧(f)=2
(n/2)+1−n/2−2
, for any Boolean function
f on
n variables (
n even) is given. A counting argument gives a lower bound of
c
∧(f)=2
(n/2)−
O(n)
. Thus we have shown a separation, by an exponential factor, between worst-case Boolean complexity (which is known to be
Θ(2
nn
−1
)) and worst-case multiplicative complexity. A construction of circuits for symmetric Boolean functions on
n variables, requiring less than
n+3
n
AND gates, is described. |
|---|---|
| ISSN: | 0304-3975 1879-2294 |
| DOI: | 10.1016/S0304-3975(99)00182-6 |