On the multiplicative complexity of Boolean functions over the basis [formula omitted]

The multiplicative complexity c ∧(f) of a Boolean function f is the minimum number of AND gates in a circuit representing f which employs only AND, XOR and NOT gates. A constructive upper bound, c ∧(f)=2 (n/2)+1−n/2−2 , for any Boolean function f on n variables ( n even) is given. A counting argumen...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theoretical computer science Ročník 235; číslo 1; s. 43 - 57
Hlavní autoři: Boyar, Joan, Peralta, René, Pochuev, Denis
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 17.03.2000
Elsevier
Témata:
ISSN:0304-3975, 1879-2294
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The multiplicative complexity c ∧(f) of a Boolean function f is the minimum number of AND gates in a circuit representing f which employs only AND, XOR and NOT gates. A constructive upper bound, c ∧(f)=2 (n/2)+1−n/2−2 , for any Boolean function f on n variables ( n even) is given. A counting argument gives a lower bound of c ∧(f)=2 (n/2)− O(n) . Thus we have shown a separation, by an exponential factor, between worst-case Boolean complexity (which is known to be Θ(2 nn −1 )) and worst-case multiplicative complexity. A construction of circuits for symmetric Boolean functions on n variables, requiring less than n+3 n AND gates, is described.
ISSN:0304-3975
1879-2294
DOI:10.1016/S0304-3975(99)00182-6