Abstraction Layer For Standardizing APIs of Task-Based Engines
We introduce AL4SAN , a lightweight library for abstracting the APIs of task-based runtime engines. AL4SAN unifies the expression of tasks and their data dependencies. It supports various dynamic runtime systems relying on compiler technology and user-defined APIs. It enables a single application to...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on parallel and distributed systems Jg. 31; H. 11; S. 2482 - 2495 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1045-9219, 1558-2183 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We introduce AL4SAN , a lightweight library for abstracting the APIs of task-based runtime engines. AL4SAN unifies the expression of tasks and their data dependencies. It supports various dynamic runtime systems relying on compiler technology and user-defined APIs. It enables a single application to employ different runtimes and their respective scheduling components, while providing user-obliviousness to the underlying hardware configurations. AL4SAN exposes common front-end APIs and connects to different back-end runtimes. Experiments on performance and overhead assessments are reported on various shared- and distributed-memory systems, possibly equipped with hardware accelerators. A range of workloads, from compute-bound to memory-bound regimes, are employed as proxies for current scientific applications. The low overhead (less than 10 percent) achieved using a variety of workloads enables AL4SAN to be deployed for fast development of task-based numerical algorithms. More interestingly, AL4SAN enables runtime interoperability by switching runtimes at runtime. Blending runtime systems permits to achieve a twofold speedup on a task-based generalized symmetric eigenvalue solver, relative to state-of-the-art implementations. The ultimate goal of AL4SAN is not to create a new runtime, but to strengthen co-design of existing runtimes/applications, while facilitating user productivity and code portability. The code of AL4SAN is freely available at https://github.com/ecrc/al4san , with extensions in progress. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1045-9219 1558-2183 |
| DOI: | 10.1109/TPDS.2020.2992923 |