Abstraction Layer For Standardizing APIs of Task-Based Engines

We introduce AL4SAN , a lightweight library for abstracting the APIs of task-based runtime engines. AL4SAN unifies the expression of tasks and their data dependencies. It supports various dynamic runtime systems relying on compiler technology and user-defined APIs. It enables a single application to...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on parallel and distributed systems Vol. 31; no. 11; pp. 2482 - 2495
Main Authors: Alomairy, Rabab, Ltaief, Hatem, Abduljabbar, Mustafa, Keyes, David
Format: Journal Article
Language:English
Published: New York IEEE 01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1045-9219, 1558-2183
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduce AL4SAN , a lightweight library for abstracting the APIs of task-based runtime engines. AL4SAN unifies the expression of tasks and their data dependencies. It supports various dynamic runtime systems relying on compiler technology and user-defined APIs. It enables a single application to employ different runtimes and their respective scheduling components, while providing user-obliviousness to the underlying hardware configurations. AL4SAN exposes common front-end APIs and connects to different back-end runtimes. Experiments on performance and overhead assessments are reported on various shared- and distributed-memory systems, possibly equipped with hardware accelerators. A range of workloads, from compute-bound to memory-bound regimes, are employed as proxies for current scientific applications. The low overhead (less than 10 percent) achieved using a variety of workloads enables AL4SAN to be deployed for fast development of task-based numerical algorithms. More interestingly, AL4SAN enables runtime interoperability by switching runtimes at runtime. Blending runtime systems permits to achieve a twofold speedup on a task-based generalized symmetric eigenvalue solver, relative to state-of-the-art implementations. The ultimate goal of AL4SAN is not to create a new runtime, but to strengthen co-design of existing runtimes/applications, while facilitating user productivity and code portability. The code of AL4SAN is freely available at https://github.com/ecrc/al4san , with extensions in progress.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1045-9219
1558-2183
DOI:10.1109/TPDS.2020.2992923