An Ensemble Surrogate-Based Framework for Expensive Multiobjective Evolutionary Optimization

Surrogate-assisted evolutionary algorithms (SAEAs) have become very popular for tackling computationally expensive multiobjective optimization problems (EMOPs), as the surrogate models in SAEAs can approximate EMOPs well, thereby reducing the time cost of the optimization process. However, with the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on evolutionary computation Vol. 26; no. 4; pp. 631 - 645
Main Authors: Lin, Qiuzhen, Wu, Xunfeng, Ma, Lijia, Li, Jianqiang, Gong, Maoguo, Coello, Carlos A. Coello
Format: Journal Article
Language:English
Published: New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1089-778X, 1941-0026
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Surrogate-assisted evolutionary algorithms (SAEAs) have become very popular for tackling computationally expensive multiobjective optimization problems (EMOPs), as the surrogate models in SAEAs can approximate EMOPs well, thereby reducing the time cost of the optimization process. However, with the increased number of decision variables in EMOPs, the prediction accuracy of surrogate models will deteriorate, which inevitably worsens the performance of SAEAs. To deal with this issue, this article suggests an ensemble surrogate-based framework for tackling EMOPs. In this framework, a global surrogate model is trained under the entire search space to explore the global area, while a number of surrogate submodels are trained under different search subspaces to exploit the subarea, so as to enhance the prediction accuracy and reliability. Moreover, a new infill sampling criterion is designed based on a set of reference vectors to select promising samples for training the models. To validate the generality and effectiveness of our framework, three state-of-the-art evolutionary algorithms [nondominated sorting genetic algorithm III (NSGA-III), multiobjective evolutionary algorithm based on decomposition with differential evolution (MOEA/D-DE) and reference vector-guided evolutionary algorithm (RVEA)] are embedded, which significantly improve their performance for solving most of the test EMOPs adopted in this article. When compared to some competitive SAEAs for solving EMOPs with up to 30 decision variables, the experimental results also validate the advantages of our approach in most cases.
AbstractList Surrogate-assisted evolutionary algorithms (SAEAs) have become very popular for tackling computationally expensive multiobjective optimization problems (EMOPs), as the surrogate models in SAEAs can approximate EMOPs well, thereby reducing the time cost of the optimization process. However, with the increased number of decision variables in EMOPs, the prediction accuracy of surrogate models will deteriorate, which inevitably worsens the performance of SAEAs. To deal with this issue, this article suggests an ensemble surrogate-based framework for tackling EMOPs. In this framework, a global surrogate model is trained under the entire search space to explore the global area, while a number of surrogate submodels are trained under different search subspaces to exploit the subarea, so as to enhance the prediction accuracy and reliability. Moreover, a new infill sampling criterion is designed based on a set of reference vectors to select promising samples for training the models. To validate the generality and effectiveness of our framework, three state-of-the-art evolutionary algorithms [nondominated sorting genetic algorithm III (NSGA-III), multiobjective evolutionary algorithm based on decomposition with differential evolution (MOEA/D-DE) and reference vector-guided evolutionary algorithm (RVEA)] are embedded, which significantly improve their performance for solving most of the test EMOPs adopted in this article. When compared to some competitive SAEAs for solving EMOPs with up to 30 decision variables, the experimental results also validate the advantages of our approach in most cases.
Author Ma, Lijia
Li, Jianqiang
Gong, Maoguo
Wu, Xunfeng
Coello, Carlos A. Coello
Lin, Qiuzhen
Author_xml – sequence: 1
  givenname: Qiuzhen
  orcidid: 0000-0003-2415-0401
  surname: Lin
  fullname: Lin, Qiuzhen
  email: qiuzhlin@szu.edu.cn
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 2
  givenname: Xunfeng
  surname: Wu
  fullname: Wu, Xunfeng
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 3
  givenname: Lijia
  orcidid: 0000-0002-1201-8051
  surname: Ma
  fullname: Ma, Lijia
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 4
  givenname: Jianqiang
  orcidid: 0000-0002-2208-962X
  surname: Li
  fullname: Li, Jianqiang
  email: lijq@szu.edu.cn
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 5
  givenname: Maoguo
  orcidid: 0000-0002-0415-8556
  surname: Gong
  fullname: Gong, Maoguo
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, International Research Center for Intelligent Perception and Computation, Xidian University, Xi'an, China
– sequence: 6
  givenname: Carlos A. Coello
  orcidid: 0000-0002-8435-680X
  surname: Coello
  fullname: Coello, Carlos A. Coello
  organization: Computer Science Department, CINVESTAV-IPN, Mexico City, Mexico
BookMark eNp9UMtOwzAQtFCRKIUPQFwicU6x83DiY6lSQCrqgYI4IFmOs0EuSRxspzy-noRWHDhw2p3VzO7sHKNRoxtA6IzgKSGYXa6zx_k0wAGZhgSHLKQHaExYRHyMAzrqe5wyP0nSpyN0bO0GYxLFhI3R86zxssZCnVfg3XfG6BfhwL8SFgpvYUQN79q8eqU2XvbRQmPVFry7rnJK5xuQboDZVlddP2iE-fRWrVO1-hIDPkGHpagsnO7rBD0ssvX8xl-urm_ns6Uvw5A6vwBCCwmFLHCcJJSVQCUAzUuJ0zIXOaM0TgQWqZCE5iSgQPIogoIFSR4UFMIJutjtbY1-68A6vtGdafqTPKCMBmkUkrhnJTuWNNpaAyWXyv34dEaoihPMhyj5ECUfouT7KHsl-aNsjar7b__VnO80CgB--SzGLO7tfAPy24Pg
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_eswa_2024_126103
crossref_primary_10_1109_TETCI_2024_3370033
crossref_primary_10_1007_s41965_024_00165_w
crossref_primary_10_1109_TETCI_2024_3372378
crossref_primary_10_1007_s40747_022_00650_8
crossref_primary_10_1109_TEVC_2023_3250350
crossref_primary_10_3390_math12081178
crossref_primary_10_1016_j_ins_2024_121079
crossref_primary_10_1109_TETCI_2023_3251400
crossref_primary_10_1109_TETCI_2024_3359517
crossref_primary_10_3390_math12162572
crossref_primary_10_1109_TEVC_2024_3380327
crossref_primary_10_1016_j_ins_2024_120449
crossref_primary_10_1007_s40747_025_01941_6
crossref_primary_10_1016_j_swevo_2022_101170
crossref_primary_10_1109_TEVC_2022_3232776
crossref_primary_10_3390_sym17050671
crossref_primary_10_1109_TETCI_2024_3393388
crossref_primary_10_1016_j_asoc_2025_113367
crossref_primary_10_1016_j_engappai_2023_107745
crossref_primary_10_1007_s00500_025_10432_2
crossref_primary_10_1016_j_asoc_2023_110571
crossref_primary_10_1016_j_asoc_2025_113320
crossref_primary_10_1016_j_swevo_2024_101728
crossref_primary_10_1016_j_swevo_2024_101729
crossref_primary_10_1016_j_swevo_2025_101926
crossref_primary_10_1016_j_ast_2025_110691
crossref_primary_10_1109_ACCESS_2024_3501775
crossref_primary_10_1016_j_ins_2024_121045
crossref_primary_10_3390_math12040554
crossref_primary_10_1007_s12293_023_00404_0
crossref_primary_10_1016_j_ins_2024_121620
crossref_primary_10_1016_j_asoc_2025_112727
crossref_primary_10_1109_TEVC_2023_3340678
crossref_primary_10_1016_j_swevo_2024_101586
Cites_doi 10.1109/TEVC.2016.2555315
10.1007/s00158-006-0051-9
10.1007/s00500-017-2965-0
10.1109/TEVC.2008.925798
10.1109/CEC.2013.6557876
10.1109/TEVC.2005.861417
10.1109/TSMCC.2005.855506
10.1007/978-3-030-18764-4_8
10.1007/978-3-030-18764-4_10
10.1109/TEVC.2016.2622301
10.1109/TCYB.2018.2794503
10.1109/TEVC.2019.2925959
10.1007/978-3-540-24694-7_71
10.1109/TEVC.2017.2783441
10.1142/9789813148239_0005
10.1016/j.knosys.2020.106520
10.1109/CEC.2018.8477766
10.1016/j.swevo.2011.05.001
10.1023/A:1008202821328
10.1109/TCYB.2018.2811761
10.1109/TCYB.2018.2809430
10.1109/TEVC.2016.2519378
10.1016/j.ejor.2006.08.008
10.1109/TEVC.2018.2802784
10.1016/j.envsoft.2018.11.018
10.1080/01605682.2018.1468860
10.1109/CEC.2002.1007032
10.1145/3071178.3071276
10.1007/978-3-540-76931-6_23
10.1109/TEVC.2013.2281535
10.1080/00401706.2000.10485979
10.1007/s00158-013-1029-z
10.1109/TMTT.2016.2583427
10.1137/S1052623496307510
10.1109/TEVC.2005.859463
10.1016/j.knosys.2020.106418
10.1109/MCI.2017.2742868
10.1016/j.swevo.2019.03.005
10.1016/j.asoc.2012.02.025
10.1109/TEVC.2009.2027359
10.1109/TEVC.2005.851274
10.1109/TEVC.2009.2033671
10.1007/s40747-017-0039-7
10.1109/TEVC.2013.2281533
10.1007/978-3-642-17298-4_24
10.2514/1.12994
10.1109/TEVC.2018.2869001
10.1016/j.ins.2020.01.048
10.1109/TEVC.2017.2693320
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2021.3103936
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 645
ExternalDocumentID 10_1109_TEVC_2021_3103936
9509584
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: 61876110
  funderid: 10.13039/501100001809
– fundername: 2018 SEP-Cinvestav Grant (application no. 4)
– fundername: Basque Government through the BERC 2018–2021 Program by the Spanish Ministry of Science
– fundername: Shenzhen Scientific Research and Development Funding Program
  grantid: JCYJ20190808164211203
  funderid: 10.13039/501100017622
– fundername: Guangdong “Pearl River Talent Recruitment Program”
  grantid: 2019ZT08X603
– fundername: Shenzhen Science and Technology Innovation Commission
  grantid: R2020A045
  funderid: 10.13039/501100010877
– fundername: CONACyT Project
  grantid: 1920
  funderid: 10.13039/501100003141
– fundername: Joint Funds of the NSFC through Key Program
  grantid: U1713212
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c336t-de16dcedcd057769fe6cee6bfc08fbab96657a0a8ac16b126e1b44ed927b2d6e3
IEDL.DBID RIE
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000833837200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Mon Jun 30 05:36:02 EDT 2025
Sat Nov 29 03:13:49 EST 2025
Tue Nov 18 21:43:01 EST 2025
Wed Aug 27 02:25:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-de16dcedcd057769fe6cee6bfc08fbab96657a0a8ac16b126e1b44ed927b2d6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2415-0401
0000-0002-0415-8556
0000-0002-8435-680X
0000-0002-1201-8051
0000-0002-2208-962X
OpenAccessLink http://hdl.handle.net/20.500.11824/1563
PQID 2696284315
PQPubID 85418
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TEVC_2021_3103936
ieee_primary_9509584
proquest_journals_2696284315
crossref_primary_10_1109_TEVC_2021_3103936
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref15
ref58
ref14
chugh (ref40) 2019; 23
ref52
ref11
ref54
ref17
ref16
ref18
ref50
ref45
ref48
ref47
ref42
ref41
ref44
ref43
deb (ref51) 1995; 9
ref49
deb (ref46) 2021; 26
ref8
guo (ref10) 2016
ref9
ref3
ref6
ref5
martínez (ref19) 2013
zhang (ref55) 2008
ref35
deb (ref1) 2001
ref34
ref37
ref36
zitzler (ref4) 2001
ref31
jin (ref27) 2019; 49
ref30
ref33
ref32
ref2
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
zitzler (ref7) 2004
deb (ref53) 1996; 26
References_xml – ident: ref37
  doi: 10.1109/TEVC.2016.2555315
– ident: ref33
  doi: 10.1007/s00158-006-0051-9
– volume: 23
  start-page: 3137
  year: 2019
  ident: ref40
  article-title: A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms
  publication-title: Soft Comput
  doi: 10.1007/s00500-017-2965-0
– ident: ref5
  doi: 10.1109/TEVC.2008.925798
– ident: ref24
  doi: 10.1109/CEC.2013.6557876
– ident: ref48
  doi: 10.1109/TEVC.2005.861417
– ident: ref14
  doi: 10.1109/TSMCC.2005.855506
– ident: ref17
  doi: 10.1007/978-3-030-18764-4_8
– ident: ref39
  doi: 10.1007/978-3-030-18764-4_10
– start-page: 1
  year: 2016
  ident: ref10
  article-title: Small data driven evolutionary multi-objective optimization of fused magnesium furnaces
  publication-title: Proc IEEE Symp Series Comput Intell
– ident: ref16
  doi: 10.1109/TEVC.2016.2622301
– volume: 49
  start-page: 1012
  year: 2019
  ident: ref27
  article-title: Heterogeneous ensemble-based infill criterion for evolutionary multiobjective optimization of expensive problems
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2018.2794503
– ident: ref38
  doi: 10.1109/TEVC.2019.2925959
– ident: ref57
  doi: 10.1007/978-3-540-24694-7_71
– volume: 26
  start-page: 5
  year: 2021
  ident: ref46
  article-title: Surrogate modeling approaches for multiobjective optimization: Methods, taxonomy, and results
  publication-title: Comput Math Appl
– ident: ref25
  doi: 10.1109/TEVC.2017.2783441
– ident: ref30
  doi: 10.1142/9789813148239_0005
– ident: ref28
  doi: 10.1016/j.knosys.2020.106520
– ident: ref11
  doi: 10.1109/CEC.2018.8477766
– volume: 9
  start-page: 115
  year: 1995
  ident: ref51
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst
– ident: ref12
  doi: 10.1016/j.swevo.2011.05.001
– ident: ref52
  doi: 10.1023/A:1008202821328
– ident: ref26
  doi: 10.1109/TCYB.2018.2811761
– start-page: 1405
  year: 2013
  ident: ref19
  article-title: MOEA/D assisted by RBF networks for expensive multi-objective optimization problems
  publication-title: Proc 15th Annu Conf Genet Evol Comput
– ident: ref31
  doi: 10.1109/TCYB.2018.2809430
– ident: ref47
  doi: 10.1109/TEVC.2016.2519378
– ident: ref8
  doi: 10.1016/j.ejor.2006.08.008
– ident: ref20
  doi: 10.1109/TEVC.2018.2802784
– ident: ref2
  doi: 10.1016/j.envsoft.2018.11.018
– year: 2008
  ident: ref55
  article-title: Multiobjective optimization test instances for the CEC 2009 special session and competition
– year: 2001
  ident: ref4
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
– ident: ref43
  doi: 10.1080/01605682.2018.1468860
– ident: ref54
  doi: 10.1109/CEC.2002.1007032
– ident: ref45
  doi: 10.1145/3071178.3071276
– ident: ref18
  doi: 10.1007/978-3-540-76931-6_23
– year: 2001
  ident: ref1
  publication-title: Multi-Objective Optimization Using Evolutionary Algorithms
– ident: ref3
  doi: 10.1109/TEVC.2013.2281535
– ident: ref50
  doi: 10.1080/00401706.2000.10485979
– volume: 26
  start-page: 30
  year: 1996
  ident: ref53
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: J Inform Comput Sci
– ident: ref22
  doi: 10.1007/s00158-013-1029-z
– ident: ref9
  doi: 10.1109/TMTT.2016.2583427
– ident: ref49
  doi: 10.1137/S1052623496307510
– ident: ref34
  doi: 10.1109/TEVC.2005.859463
– ident: ref29
  doi: 10.1016/j.knosys.2020.106418
– ident: ref58
  doi: 10.1109/MCI.2017.2742868
– ident: ref32
  doi: 10.1016/j.swevo.2019.03.005
– ident: ref21
  doi: 10.1016/j.asoc.2012.02.025
– ident: ref15
  doi: 10.1109/TEVC.2009.2027359
– ident: ref41
  doi: 10.1109/TEVC.2005.851274
– ident: ref42
  doi: 10.1109/TEVC.2009.2033671
– start-page: 832
  year: 2004
  ident: ref7
  article-title: Indicator-based selection in multiobjective search
  publication-title: Proc Int Conf Parallel Problem Solving Nat
– ident: ref56
  doi: 10.1007/s40747-017-0039-7
– ident: ref6
  doi: 10.1109/TEVC.2013.2281533
– ident: ref44
  doi: 10.1007/978-3-642-17298-4_24
– ident: ref23
  doi: 10.2514/1.12994
– ident: ref13
  doi: 10.1109/TEVC.2018.2869001
– ident: ref36
  doi: 10.1016/j.ins.2020.01.048
– ident: ref35
  doi: 10.1109/TEVC.2017.2693320
SSID ssj0014519
Score 2.6016212
Snippet Surrogate-assisted evolutionary algorithms (SAEAs) have become very popular for tackling computationally expensive multiobjective optimization problems...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 631
SubjectTerms Computational modeling
Ensemble surrogate
Evolutionary algorithms
Evolutionary computation
Genetic algorithms
Model accuracy
model management
multiobjective optimization
Multiple objective analysis
Optimization
Predictive models
Sorting algorithms
Space exploration
Subspaces
Training
Uncertainty
Title An Ensemble Surrogate-Based Framework for Expensive Multiobjective Evolutionary Optimization
URI https://ieeexplore.ieee.org/document/9509584
https://www.proquest.com/docview/2696284315
Volume 26
WOSCitedRecordID wos000833837200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEC5UPOwefC_OrkofPInRdJLpx1FlBk8q-GAOC6Ef1bCLZiQzI-y_3-5OzygogrccOhDydddX1VX1FcChzktXUM0zrpTIPONhJnkfg-6tMKIvclO5OGyCX12J0UjeLMHxohcGEWPxGZ6Ex5jLt2MzC1dlp9KzmyfMZVjmnHW9WouMQZBJ6YrppfcYxShlMGkuT-8GDxc-EizoSRiqJaMa8ysHxaEq7yxxpJfh-tc-bAPWkhtJzjrcN2EJmy1Yn49oIOnEbsH3N3qD2_D7rCGDZoJP-hHJ7axtx-ESLTv3TGbJcF6mRbwfS4IEcixtJ7FFd6z_dpaRDF7SZlXtP3LtDc5T6uTcgfvh4O7iMkvjFTJTlmyaWaTMGrTGep-NM-mQecZk2plcOK20DEkZlSuhDGWaFgypriq0suC6sAzLH7DSjBvcBcJ9YFRxXSlFjY-4nDZOl9Jq4UrprYjrQT7_4bVJ2uNhBMZjHWOQXNYBozpgVCeMenC0eOW5E974bPF2AGWxMOHRg705qnU6mpO6YJJ5Ti5p_-fHb_2Cb0XocYhVfnuwMm1nuA-r5mX6Z9IexF33H7V21wc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxwxEB7UCrYPtf4ovdbWPPgkrm5297LJo5U7LNpT8JR7EJb8mICie2XvTuh_3ySbuwpKoW_7kIVlv2S-mczMNwB7Ks1tRlWZlFLyxDEeJqLsote95Zp3eaoLG4ZNlIMBH43E5RIcLHphEDEUn-Ghfwy5fDPWM39VdiQcuznCXIY33aLI0rZba5Ez8EIpbTm9cD4jH8UcJk3F0bB3c-JiwYwe-rFaIugx_2WhMFblhS0OBNNf_79P-wDvoyNJjlvkN2AJ601Ynw9pIPHMbsK7Z4qDW3B7XJNePcFH9YDkatY0Y3-Nlnx3XGZIf16oRZwnS7wIcihuJ6FJd6zuW9tIek9xu8rmN7lwJucx9nJuw3W_Nzw5TeKAhUTnOZsmBikzGo02zmsrmbDIHGcyZXXKrZJK-LSMTCWXmjJFM4ZUFQUakZUqMwzzj7BSj2v8BKR0oVFRqkJKql3MZZW2KhdGcZsLZ0dsB9L5D690VB_3QzAeqhCFpKLyGFUeoypi1IH9xSu_WumNfy3e8qAsFkY8OrAzR7WKh3NSZUwwx8o57X5-_a1dWDsd_jyvzn8Mzr7A28x3PISavx1YmTYz_Aqr-ml6N2m-hR34Bwj42k4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Ensemble+Surrogate-Based+Framework+for+Expensive+Multiobjective+Evolutionary+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Lin%2C+Qiuzhen&rft.au=Wu%2C+Xunfeng&rft.au=Ma%2C+Lijia&rft.au=Li%2C+Jianqiang&rft.date=2022-08-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=26&rft.issue=4&rft.spage=631&rft.epage=645&rft_id=info:doi/10.1109%2FTEVC.2021.3103936&rft.externalDocID=9509584
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon