The degree of approximation of sets in euclidean space using sets with bounded Vapnik-Chervonenkis dimension

The degree of approximation of infinite-dimensional function classes using finite n-dimensional manifolds has been the subject of a classical field of study in the area of mathematical approximation theory. In Ratsaby and Maiorov (1997), a new quantity ρ n ( F, L q ) which measures the degree of app...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete Applied Mathematics Ročník 86; číslo 1; s. 81 - 93
Hlavní autori: Maiorov, Vitaly, Ratsaby, Joel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Lausanne Elsevier B.V 18.08.1998
Amsterdam Elsevier
New York, NY
Predmet:
ISSN:0166-218X, 1872-6771
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The degree of approximation of infinite-dimensional function classes using finite n-dimensional manifolds has been the subject of a classical field of study in the area of mathematical approximation theory. In Ratsaby and Maiorov (1997), a new quantity ρ n ( F, L q ) which measures the degree of approximation of a function class F by the best manifold H n of pseudo-dimension less than or equal to n in the L q -metric has been introduced. For sets F ⊂ R m it is defined as ρ n ( F, l m q ) = inf H n dist( F, H n ), where dist( F, H n ) = sup xϵF inf yϵH n ∥ x− y ∥ l m q and H n ⊂ R m is any set of VC-dimension less than or equal to n where n< m. It measures the degree of approximation of the set F by the optimal set H n ⊂ R m of VC-dimension less than or equal to n in the l m q -metric. In this paper we compute ρ n ( F, l m q ) for F being the unit ball B m p = {x ϵ R m : ∥x∥ l m p ⩽ 1} for any 1 ⩽ p, q ⩽ ∞, and for F being any subset of the boolean m-cube of size larger than 2 mγ , for any 1 2 <γ< 1 .
ISSN:0166-218X
1872-6771
DOI:10.1016/S0166-218X(98)00015-8