Extraction of Building Roof Boundaries From LiDAR Data Using an Adaptive Alpha-Shape Algorithm

The alpha-shape algorithm was developed to extract object shapes in 2-D space; however, the accuracy of the result depends on an appropriate choice of the parameter <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>. This parameter is di...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE geoscience and remote sensing letters Ročník 16; číslo 8; s. 1289 - 1293
Hlavní autori: dos Santos, Renato Cesar, Galo, Mauricio, Carrilho, Andre Caceres
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1545-598X, 1558-0571
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The alpha-shape algorithm was developed to extract object shapes in 2-D space; however, the accuracy of the result depends on an appropriate choice of the parameter <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>. This parameter is directly related to point density and the level of detail of the boundary. Similar approaches usually consider a unique parameter <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> to extract all buildings in the data set. However, as the point density can vary along the cloud and also along the building, using a global parameter may not be suitable in some situations. This letter proposes an adaptive method to overcome this limitation. It estimates a local parameter <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> for each edge based on local point spacing. The experiments were performed considering buildings with different levels of complexity, which were selected from two different LiDAR data sets and three densities. Qualitative and quantitative analysis enabled verification of the proposed method, showing good results in cases where significant density variation occurs along the building, and in the extraction of complex buildings such as those composed of convex and concave segments and/or the presence of inner boundaries. The proposed adaptive solution can overcome most limitations of simpler approaches, such as the use of a global parameter or only one parameter per building.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2019.2894098